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Abstract

Four methods are presented to estimate contaminant concentration pro�les in soil from

the intensities of neutron-induced capture-gamma photon intensities measured at the soil

surface. In particular, the method of linear regularization with and without an iterative

positivity constraint, the Backus-Gilbert method, and the maximum entropy method are

applied to the soil contamination problem. Example results obtained with the four methods

are given for photon intensities calculated for idealized test contaminant pro�les in soil

irradiated by neutron sources above the surface.

1 Introduction

In the technique of prompt-gamma neutron-activation analysis (PGNAA), soil is irradiated

with fast neutrons, usually from above the surface, and the subsequent capture gamma

photons produced when these neutrons are absorbed by elemental contaminants in the soil

are measured at, or slightly above, the surface. For a given contaminant, capture photons

with typically many distinct characteristic energies are emitted. The uncollided capture

photons that are emitted by each element and that reach the surface are measured. With

these measured intensities and a PGNAA model that expresses photon intensities in terms

of the concentration pro�le, the model can, in principle, be \inverted" to estimate the

concentration of a particular contaminant as a function of depth.
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To estimate soil contamination pro�les from the intensities of uncollided gamma photons

measured above the soil surface, it is �rst necessary to develop a mathematical model

that relates contaminant concentration pro�les to the detector measurements. In the next

section idealized soil irradiation geometries are considered and the fundamental relationship

between the detector measurement and the soil contaminant pro�le is derived. In later

sections four modern approaches for inverting the PGNAA model to obtain the contaminant

pro�le from measurements of uncollided capture gamma intensities at the soil surface are

summarized and example results given.

2 PGNAA Soil Contamination Model

We assume that the soil surface is a horizontal plane and that the bulk soil composition

is uniform. The contaminant concentration varies only with depth z into the soil, i.e., no

lateral variations are considered. Further, the contaminant is assumed to be su�ciently

dilute that it has negligible inuence on the neutron �eld in the soil. The capture-gamma

detector is assumed to be a point isotropic detector which may be arbitrarily collimated

(i.e., only radiation incident from certain directions can reach the detector). In this section

a quite general PGNAA model is developed and, for two special irradiation geometries, the

model is shown to simplify considerably.

2.1 Capture-Gamma Photon Source Strengths

Central to the development of any PGNAA mathematical model that relates a contaminant

pro�le to detector measurements is the determination of the number of capture-gamma

photons emitted throughout the soil exposed to neutrons.

Soil positions are de�ned in a cylindrical coordinate system with the vertical axis through

the detector, which is located at elevation hd above the soil surface at z = 0. At a position

in the soil at radial distance r, depth z, and azimuthal angle  , the energy-dependent

neutron uence produced by the neutron source is denoted by �(r; z;  ; E). If the atomic

concentration of the contaminant of concern is denoted by u(z) (u for unknown), the number

of neutrons absorbed by this contaminant, per unit soil volume, at location (r; z;  ) is

Nabs(r; z;  ) = u(z)

Z Emax

0
dE �(r; z;  ; E)�c(E); (1)
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where �c(E) is the microscopic absorption cross section of the contaminant element for

neutrons with energy E, and Emax is the maximum energy of the incident neutrons.

To avoid the necessity of using the energy-dependent uence in the PGNAA model, this

neutron absorption can be expressed in terms of the thermal neutron uence �th(r; z;  ),

obtained by integrating �(r; z;  ;E) over all thermal energies. Toward this end, de�ne an

e�ective capture cross section �c as

�c � 1

�th(r; z;  )

Z Emax

0
dE �(r; z;  ;E)�c(E): (2)

For most contaminants the e�ective capture cross section is remarkably close to the actual

thermal absorption cross section, a good indication that most neutron absorption occurs

only after thermalization [Shue and Faw 1996; Shue et al. 1996]. Moreover, it has been

found that the shape of the epithermal neutron spectrum is almost independent of depth

so that �c also is independent of depth [Shue and Faw 1996; Shue et al. 1996]. With this

e�ective capture cross section, the neutron absorption Nabs can then be computed knowing

only the thermal uence, namely Nabs(r; z;  ) = �cu(z)�th(r; z; �).

For each thermal neutron absorbed by the contaminant element, fi capture photons

of energy Ei are emitted. Capture-photon yields for nonthermal neutrons are usually not

known, and in this study are assumed to equal those for thermal neutron absorption. More-

over, since most neutrons are absorbed only after thermalization, the use of thermal-capture

yields for all neutron energies is a reasonable approximation. Finally, the number Si(r; z;  )

of capture photons with energy Ei that are emitted per unit soil volume at position (r; z;  )

as a result of neutron capture in the contaminant is give by

Si(r; z;  ) = fi �c u(z)�th(r; z;  ): (3)

Before the source strength of capture-gamma photons can be determined from Eq. (3),

the thermal uence �th(r; z;  ) must �rst be determined. In a companion paper, empir-

ical expressions and tabular data, based on detailed neutron transport calculations, are

presented for the thermal uence in �ve representative soils with several practical neutron

sources [Shue and Faw 1996; Shue et al. 1997]. Example uence pro�les for uniform and

perpendicular illumination of the soil surface by 14-MeV neutrons are shown in Fig. 1.
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2.2 A General PGNAA Model

Consider a di�erential soil volume dV = r dr dz d in which the density of emitted photons

of energy Ei is Si. Let the attenuation kernel Gi(r; z;  ) be the probability a photon of

energy Ei emitted at (r; z;  ) results in a measured full-energy (photopeak) interaction in

the gamma-ray spectrometer detector. Since the soil composition is assumed to be uniform

and the detector is assumed to respond isotropically, Gi is independent of  . Then the

expected number of counts ci measured by the detector caused by photons of energy Ei

emitted in dV is simply Gi(r; z)Si(r; z;  )dV . The expected total counts ci from capture-

gamma photons emitted everywhere in the soil is thus

ci =

Z 1

0
dz

Z 2�

0
d 

Z rmax(z; )

0
dr rGi(r; z)Si(r; z;  ); (4)

where the radial limit rmax(z;  ) depends on the position and collimation of the gamma-

ray detector. Finally, substitution of Eq. (3) into Eq. (4) and accounting for noise and

statistical uncertainty in the detection process shows that the observed counts cobsi for the

ith capture-gamma photon is related to the contaminant concentration pro�le u(z) by the

following Fredholm integral equation of the �rst kind

ci = cobsi � ni =
Z 1

0
dz u(z)Ri(z); (5)

where ni �
q
cobsi is the contribution of noise to the ith gamma-photon measurement and

the emission kernel Ri(z) is

Ri(z) � fi �c

Z 2�

0
d 

Z rmax(z; )

0
dr rGi(r; z)�th(r; z;  ): (6)

The key problem of PGNAA soil contamination analysis is to solve or invert Eq. (5) for u(z)

given the counts ci; i = 1; : : : ; N . For simplicity, in this paper the noise in the observed

counts is assumed negligible so that ci ' cobsi . However, the methods presented here can be

readily combined with appropriate noise models.

2.3 PGNAA Models for Uncollided Capture Photons

In most gamma-ray activation analyses, only the uncollided photons reaching the detector

are considered. Although contributions to ci from scattered photons have been proposed

[Letellier 1997] only uncollided contributions are considered here. For uncollided photons,
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the attenuation kernel is

Gi(r; z) = �i
4�[r2 + (z + hd)2]

exp(��iz sec �); (7)

where �i is the expected number of counts contributing to ci per unit uence of photons with

energy Ei at the detector, �i � �(Ei) is the total attenuation coe�cient (less the coherent

scattering component) in soil for a photon of energy Ei, and � is the angle between the

vertical and the line from the detector to the emission point (r; z;  ), given by

sec � =

p
r2 + (z + hd)2

(z + hd)
: (8)

For certain sources, the neutron �eld is axially symmetric, i.e. independent of  . For

example, a point isotropic source at any location on the detector axis or uniform perpen-

dicular illumination of the surface produces such axial symmetry in �th(r; z). If in addition,

the collimated detector has an aperture half-angle of �d with respect to the vertical axis,

the upper limit for the integral of r in Eq. (6) becomes rmax = (z+ hd) tan�d. To show ex-

plicitly the dependence of the uence on the strength of the irradiating neutron source Qo,

the thermal uence is written as �th(r; z;  )� Qob�th(r; z;  ). For a point source Qo = So,

the total number of neutrons emitted by the source. If the source is deeply buried, then b�th
becomes spherically symmetric about the source (i.e., the air-ground interface has negligi-

ble e�ect on the uence pro�le), and b�th is a function of only the distance from the source

` � pr2 + jz + hsj2 where hs is the source elevation above the surface (negative for a buried
source). With these simpli�cations, the emission kernel of Eq. (6) can be written as

Ri(z) = fi�iQo�c bRi(z); (9)

where the dimensionless, normalized, emission kernel is

bRi(z) �
Z (z+hd) tan �d

0
dr

rb�th(r; z)
2[r2 + (z + hd)2]

exp(��iz sec �): (10)

For uniform and normal illumination of the surface by a beam of neutrons Qo = Jo, the

beam intensity (number incident per unit surface area). With this source, the uence is a

function only of soil depth and the integral in Eq. (10) can be performed analytically to

give bRi(z) =
1
2 [E1(�iz)� E1(�iz sec �d)]b�th(z); (11)

where E1 is the exponential integral function of order 1.
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To evaluate the emission kernel bRi from Eq. (10) or Eq. (11), the thermal uence pro�le

must �rst be determined. Recently, detailed calculations of b�th pro�les in �ve representative
soils have been performed for 14-MeV deuterium-tritium accelerator neutrons and for neu-

trons emitted by 241Am/Be and 252Cf sources [Shue et al. 1997]. Empirical approximations

have also been obtained for b�th(z) for wide-beam normal illumination of the soil, so that

Eq. (11) may be evaluated at any z. For point sources, detailed tabulations of b�th(r; z) are
available, which, together with appropriate interpolation schemes, allow the integration in

Eq. (10) to be performed numerically [Shue and Faw 1996].

2.4 Discretization of the PGNAA Model

The solution of Eq. (5) for the contaminant concentration pro�le is an inversion problem

encountered in many diverse �elds. For example, this same inversion problem, but with

di�erent kernels, is encountered in oil-well logging, neutron scattering, geophysical data

analysis, atmospheric remote sensing, astrophysics, medical tomography, and many other

data analysis applications. The principal di�culty with solving this equation for the un-

known pro�le u(z) in the PGNAA soil contamination problem is that the number N of

di�erent photopeak counts ci is generally many fewer than the number of depths at which

one would like to determine u(z). Although heavy-atom contaminants typically emit dozens

or even hundreds of capture-gamma photons with di�erent energies, most are emitted with

such low probabilities or yields that accurate measurement of their intensities is not possi-

ble. Typically only 2 to 8 capture-gamma photons have su�ciently high yields and unique

energies so that they can be measured reliably against the background of multiply scat-

tered gamma photons produced in the normal soil constituents. Consequently, in practical

applications of the PGNAA method, N is almost always a small integer.

In many solution schemes, the Fredholm integral equation of Eq. (5) is approximated

�rst by a set of linear algebraic equations for the concentration uj � u(zj) at M speci�ed

depths zj by use of some appropriate numerical quadrature scheme to approximate the

integral. The resulting linear equations can be written as

ci =
MX
j=1

Rijuj ; i = 1; :::; N; (12)

or in matrix notation c = Ru. This set represents N equations in the M unknowns fujg.
Here the N �M matrix R depends on the numerical quadrature approximation selected.
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Two possible schemes are presented below.

2.4.1 A Piece-Wise Linear Approximation

Suppose the contaminant concentration is negligible beyond a certain depth zmax = zM so

that Eq. (5) can be approximated by

ci =

Z 1

0
dzRi(z)u(z) '

Z zmax

0
dzRi(z)u(z) =

M�1X
j=1

Z zj+1

zj

dzRi(z)u(z); (13)

where zj+1 > zj and z1 = 0. Further, assume u(z) varies linearly between its values at the

endpoints of each subinterval, i.e.,

u(z) ' (zj+1 � z)uj=�j + (z � zj)uj+1=�j ; zj � z � zj+1; (14)

where �j � (zj+1 � zj). Substitution of this linear approximation into Eq. (13) gives

Eq. (12) where the Rij are given by

Rij =

8>>>>>>>>>><>>>>>>>>>>:

Z z2

z1

dz f1(z)Ri(z); j = 1

Z zj+1

zj�1

dz fj(z)Ri(z); j = 2; : : : ;M � 1

Z zM

zM�1

dz fM (z)Ri(z); j =M

(15)

where the weighting functions fj(z) are de�ned as

fj(z) =

8>>>>>><>>>>>>:

(z � zj�1)=�j�1; zj�1 � z < zj

(zj+1 � z)=�j ; zj � z < zj+1

0; otherwise

(16)

The integrals in Eq. (15) generally must be evaluated using numerical integration.

2.4.2 A Piece-Wise Quadratic Approximation

Equation (5) can also be approximated by

ci '
Z zmax

0
dzRi(z)u(z) =

M�2X
j=1

0

Z zj+2

zj

dzRi(z)u(z); (17)

where the prime on the summation indicates that the summation is over only odd values

of j. For the approximation developed here, M is assumed odd. Now approximate u(z) in
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each pair of adjacent subintervals by a quadratic function. For equally spaced nodes with

� = zj+1 � zj , u(z) in interval (zj ; zj+2) is approximated by

u(z) ' (z � zj+1)(z � zj+2)
2�2

uj � (z � zj)(z � zj+2)
�2

uj+1 +
(z � zj)(z � zj+1)

2�2
uj+2: (18)

Substitution of this result into Eq. (17) gives Eqs. (12) where the Rij are now given by

Rij =
1

2�2

8>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>:

Z z3

z1

dz (z � z2)(z � z3)Ri(z); j = 1

Z zj

zj�2

dz (z � zj�2)(z � zj�1)Ri(z)

+
Z zj+2

zj

dz (z � zj+1)(z � zj+2)Ri(z); j odd; j 6= 1;M

�2
Z zj+1

zj�1

dz (z � zj�1)(z � zj+1)Ri(z); j even

Z zM

zM�2

dz (z � zM�2)(z � zM�1)Ri(z); j =M

(19)

Other quadrature schemes yield slightly di�erent approximations forRij [Shultis et al. 1996].

3 Inversion Methods

The inversion of Eqs. (12) is an ill-posed problem since the number of unknowns M (the

uj) is generally greater than the number N of data (the ci). This means there are an

in�nite number of solutions because the solution space (of dimension M) has an (M �N)

dimensional degeneracy, i.e., any (M �N) components of u can be speci�ed arbitrarily and

still have Eq. (12) satis�ed.

One might be tempted to solve Eq. (12) by minimizing the di�erence between some

model bu(z) and the measured data. This di�erence between a model and measured data is

often quanti�ed by the �2 statistic, namely,

�2 =
NX
i=1

MX
j=1

"
ci �

MX
k=1

Rikbuk
#
S�1ij

"
cj �

MX
k=1

Rjkbuk
#

(20)

'
NX
i=1

1

�2i

"
ci �

MX
k=1

Rikbuk
#2

= jAbu� bj2: (21)

Here Sij = Covar[ni; nj] are the elements of the covariance matrix. The approximate

equality in the above result holds if we can neglect the o�-diagonal covariance terms, with
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�2i = Covar[ni; ni]. The matrix A has elements Aij = Rij=�i and the vector b has elements

bi = ci=�i. For the counting data of uncollided capture-gamma photons used in the soil

contamination problem, the estimate of �i is
p
ci provided ci is su�ciently large (namely,

ci >� 20).

However, the minimization of the positive functional A[bu] � �2 = jAbu� bj2 for a matrix
A that is degenerate, i.e., has fewer rows than columns, will not give a unique solution for u.

To obtain a unique solution, additional constraints must be imposed on the minimization

problem. For example, if any non-degenerate strictly convex functional B[bu], for example
buTH bu, is added, then the minimization of A[bu] + �B[bu] will produce a unique solution bu
[Press et al. 1992]. The addition of the term �B[bu] is said to \regularize" the minimization

problem, i.e., to produce a unique solution.

Thus in the inverse problem, to obtain a unique solution for u, one solves the following

minimization problem

minimize: A[bu] + �B[bu]: (22)

This is the central principle of inversion theory. As the Lagrange multiplier � varies from

0 to 1, the unique solution bu varies from one minimizing A[bu] to one minimizing B[bu].
To obtain the \best" solution (corresponding to a particular value of �) one must choose

a particular criterion. For example, one might pick � so that �2 = N to agree with the

expected value of �2. Alternatively, one might pick � purely subjectively so as to produce,

for example, a \smooth" solution or a solution sensitive to abrupt changes in the pro�le u(z).

Finally, for simulated count data obtained by accurate numerical integration of Eq. (12),

the most accurate inversion will be obtained with � made as small as possible, but still

large enough to avoid numerical instabilities in the minimization algorithm.

The many apparently di�erent approaches used for inversion problems by the regular-

ization technique all involve minimizing the functional of Eq. (22) with the choice for A[bu]
and B[bu] dependent on the problem and the inversion philosophy. We next summarize four

widely used inversion methods, all of which use the above regularization approach.

3.1 The Linear Regularization (LR) Method

The linear regularization method goes by many names, for example, Tikhonov-Miller regu-

larization [Tikhonov 1964; Tikhonov and Arsenin 1977; Miller 1970; Biemond et al. 1990],

the Phillips-Twomey method [Phillips 1962; Twomey 1963], the constrained linear inversion
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method [Twomey 1977], and the method of regularization [Craig and Brown 1986].). As

with any method that has evolved from many di�erent disciplines, the notation and ideas

in the many seminal works are often quite di�erent. In the summary of this and the other

inversion methods discussed in this paper, we adhere closely to the notation of Press et

al. [1992].

In the linear regularization approach, the functional A[bu] of Eq. (22) is taken as the �2

of Eq. (21), i.e., A[bu] = jAbu� bj2, and the functional B[bu] is chosen as some measure of the
smoothness of u(z), which is derived from �rst or higher derivatives of u(z). In particular,

the linear regularization method requires that B[bu] = buTHbu where H is some appropriate

symmetric smoothing matrix. The inversion solution is thus determined by the following

minimization problem:

minimize: A[bu] + �B[bu] = jAbu� bj2 + �buTHbu: (23)

The matrix H is obtained by making some a priori assumption about the nature of the

pro�le u(z). An example is given in Section 3.1.1.

To obtain the minimum of the functional of Eq. (23) and �nd bu, we write Eq. (23) in
its component form as

F [bu] � A[bu] + �B[bu] = NX
i=1

24 MX
j=1

Aij buj � bi

352 + �
MX
i=1

bui MX
j=1

Hij buj : (24)

The values of buj that minimize this functional are the solutions of the M normal equations

obtain by setting the derivative of F [bu] with respect to buj to zero. Di�erentiation of Eq. (24)
with respect to buj , setting the result to zero, and use of the symmetry property of H gives

MX
j=1

( 
NX
i=1

AikAij

!
+ �Hkj

) buj = MX
i=1

Aikbi; k = 1; :::;M; (25)

or, in matrix form,

(ATA+ �H)bu = ATb: (26)

This set of M linear algebraic equations is readily solved for bu using standard techniques

such as the Lower-Upper (LU) decomposition method or the Singular Value Decompostion

(SVD) method [Press et al. 1992].
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3.1.1 Smoothing Matrices

The construction of the symmetric M �M matrix H depends on the smoothness criterion

chosen. For example, if one believes that u(z) is approximately quadratic, then a reasonable

functional to minimize so as to enforce this belief is (assuming equi-spaced values of zj and

using forward �nite di�erences)

B[bu] / Z 1

0
[bu000(z)]2 dz / M�3X

j=1

[�buj + 3buj+1 � 3buj+2 + buj+3]2: (27)

Note that this functional is nonnegative and vanishes only when bu(z) is a polynomial of

degree less than three. The constant of proportionality can be absorbed into the parameter

� so that the discretized form of B[bu] can be written as

B[bu] = jBbuj2 = buT (BTB)bu � buTHbu; (28)

where B is the (M � 3)�M �rst-order, forward �nite-di�erence matrix

B =

0BBBBBBBBBBB@

�1 3 �3 1 0 0 0 : : : 0

0 �1 3 �3 1 0 0 : : : 0
...

. . .
...

0 : : : 0 0 �1 3 �3 1 0

0 : : : 0 0 0 �1 3 �3 1

1CCCCCCCCCCCA
: (29)

The same procedure can be used to construct B (and hence H) for any �nite di�erence rep-

resentation of the function bu(z), such as a discretized di�erential equation or polynomial of

arbitrary degree. In this study smoothing functionals based on low-order (< 5) polynomial

approximations to bu(z) are used. Higher order approximations, while capable of describing
complex pro�le shapes, tend to produce unrealistic spurious oscillations in simple pro�les.

3.2 Constrained Linear Regularization (CLR) Method

Often there are physical constraints on the unknown bu(z) which should also be incorporated
into the inversion process. For example, one may want bu(z) � 0 or uL(z) � bu(z) � uU(z) for

speci�ed bounding functions uL and uU . In the PGNAA problem, the concentration pro�le

bu(z) clearly must be non-negative. The method of projections onto convex sets [Biemond

et al. 1990; Press et al. 1992] easily imposes such deterministic constraints if an iterative

solution of the functional minimization problem is used.
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Many iterative schemes can be used to �nd the bu(z) that minimizes the functional

A[bu] + �B[bu]. An unsophisticated approach is to use the method of steepest descent,

whereby the minimum of A[bu] + �B[bu] is approached by proceeding from some arbitrary

starting point in bu space by taking small steps always in the direction opposite the gradient

of A[bu] + �B[bu], i.e., downhill. Mathematically, the iteration search is

bu(k+1) = bu(k) � �r(A[bu] + �B[bu]); (30)

where � is a parameter that determines how far to move downhill in each step. For the linear

regularization method, based on minimizing the functional A[bu] + �B[bu] = jAbu� bj2 +
�buTHbu (see Eq. (23)), the minimization iteration scheme becomes

bu(k+1) = bu(k) � �r(jAbu� bj2 + �buTHbu)
= bu(k) � 2�[(ATA+ �H)bu�ATb]

= [1� �(ATA+ �H)]bu(k) + �ATb; (31)

where, to guarantee convergence [Press et al. 1992],

0 < � <
1

max eigenvalue (ATA+ �H)
: (32)

The converged solution limk!1 bu(k) will be the same as the LR solution obtained from

Eq. (26).

To impose a non-negativity constraint on this iterative solution, de�ne P as the pro-

jection operator that sets to zero all negative components of bu. Then modify Eq. (31)

to

bu(k+1) = Pf[1� �(ATA+ �H)]bu(k)+ �ATbg; (33)

ensuring that, after each iteration, any negative components of bu are set to zero. The con-

verged solution of this equation is the vector with nonnegative components that minimizes

A[bu] + �B[bu] using the linear regularization method.

3.3 The Backus-Gilbert (BG) Method

The Backus-Gilbert method [Backus and Gilbert 1967, 1968; Parker 1977; Loreda and

Epstein 1989] is di�erent from the linear regularization method in its special selection of

the functionals A and B. For B this method chooses a functional to ensure stability of the
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solution bu(z) rather than its smoothness. Speci�cally, the BG method uses a regularization

functional that seeks to minimize the sensitivity of the solution bu to errors in the data. As

a measure of how much the solution bu(z) varies as the data vary within their measurement

errors, the variance of the estimated pro�le bu(z) is used, i.e., B � var[bu(z)].
The Backus-Gilbert method also attempts to make bu(z) reproduce any sudden changes

in u(z) as faithfully as possible. Since the method is linear, the estimated pro�le bu(z) is
related to the true pro�le u(z) by a linear mapping

bu(z) = Z 1

0
dz0 b�(z0; z)u(z0); (34)

where b�(z0; z) is an averaging kernel. The BG method also attempts, in the limit of negligible

measurement errors, to make bu(z) and u(z) as close to each other as possible. This is done

by seeking to minimize the spread of b�. Consequently, the functional A is chosen to be

some positive measure of the spread of the averaging kernel. By minimizing the spread

of b� the BG method thus seeks a high resolution solution that is most sensitive to abrupt

discontinuities in u(z).

Now for the details. A set of inverse response kernels qi(z) is sought so that the estimated

pro�le is related to the measurements by

bu(z) =X
i

qi(z)ci = qT (z)c: (35)

where q(z) and c are vectors both of length N , the number of photopeak measurements.

Toward this end, de�ne the integral of the response kernel for each photon energy as

ri �
Z 1

0
dzRi(z): (36)

Then, substitution of Eq. (35) into Eq. (5) and comparison of the result with Eq. (34) shows

that the averaging kernel is given by

b�(z0; z) = NX
i=1

qi(z)Ri(z
0): (37)

To conserve contaminant atoms in Eq. (34), this kernel should be normalized to unity for

every z, so that

1 =
Z 1

0
dz0 b�(z0; z) = NX

i=1

qi(z)
Z 1

0
dz0Ri(z

0) =
NX
i=1

qi(z)ri = qT (z)r: (38)
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Many choices can be used to de�ne a measure of the spread of b�(z0; z) at each z. The
Backus-Gilbert method uses the second moment of the square of the averaging kernel, i.e.,

the functional A is selected as

A =

Z 1

0
dz0 (z0 � z)2[b�(z0; z)]2 = NX

i=1

NX
j=1

qi(z)Wij(z)qj(z) = qT (z)W(z)q(z); (39)

where W(z) is the N �N spread matrix whose elements are de�ned as

Wij �
Z 1

0
dz0 (z0 � z)2Ri(z

0)Rj(z
0): (40)

The functional B can also be expressed in terms of q(z). Through Eq. (35), standard

propagation of errors gives

B � var [bu(z)] = NX
i=1

NX
j=1

qi(z)Sijqj(z) = qT (z)Sq(z); (41)

where S is the covariance matrix. If the counts ci are assumed to be independent (as

is usually assumed), the o�-diagonal covariances terms in S can be neglected. Thus the

elements of this matrix are simply Sij = �2i �ij where �ij is the Kronecker delta function.

The column vector function q(z) is now selected as the function that minimizes the

functional A + �B at every depth z, namely,

minimize: A + �B = qT (z) [W(z) + �S]q(z); (42)

subject to the constraint of Eq. (38) that requires qT (z)r to equal unity. The minimizing

solution is [Press et al. 1992; Shultis et al. 1996]

q(z) =
[W(z) + �S]�1 r

rT [W(z) + �S]�1 r
: (43)

For any particular set of data c, whose elements are the measurements ci, the solution bu(z)
is thus formally given by

bu(z) = qT (z)c = cTq(z) =
cT [W(z) + �S]�1 r

rT [W(z) + �S]�1 r
: (44)

In the BG method, the choice of � determines the tradeo� between resolution and

numerical stability. If a more stable solution is needed, then a higher value of � should be

chosen, and, if a more resolved solution is desired, a lower value of � should be chosen.

Unlike the LR solution, the BG solution for the soil contamination problem is usually

non-negative. The matrix [W(z)+�S] is symmetric and positive de�nite with positive real
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elements. Necesarily [W(z)+�S]�1 must have some negative elements, so that Eq. (43) may

not yield a q(z) with non-negative elements. Indeed, for ci distorted by su�cient noise, the

estimated pro�le bu(z) can become negative for some depths. Nevertheless, for the noiseless

data considered in this study, Eq. (44) was found always to produce non-negative pro�les

bu(z).
In contrast to the other methods, the closed form solution of Eq. (44) involves no

discretization of the spatial variable. At each depth z at which u(z) is to be evaluated

from Eq. (44), the W(x) must be evaluated from Eq. (40) using some accurate numerical

integration scheme (here an adaptive Gaussian quadrature procedure). Then, a set ofN�N
linear equations must be solved to evaluate the vector [W(z)+�S]�1r. As a result the BG

method involves considerably more computational e�ort than the LR method, although far

less than the CLR method. One cautionary note: It was found that the determinant of

[W(z) + �S] usually vanishes at a few values of z, and for z near such critical depths the

linear equations become ill-conditioned, leading sometimes to inaccurate values of bu(z) being
calculated near these critical depths. Such numerical inaccuracies produce small spurious

bumps in the pro�le and can be seen in many of the BG examples presented in Section 4.

3.4 The Maximum Entropy (ME) Method

Maximum entropy methods provide yet another approach for regularizing the inversion of

an underdetermined system by replacing the inversion with the minimization of a functional

of the form A[bu] + �B[bu]. In this approach, Bayesian techniques are used to combine both

measured ci data and prior expectations of the contaminant pro�le. Rigorous development

is provided by Jaynes [1985], Gull and Skilling [1985, 1989], and Shultis et al. [1996], and a

very readable discussion of the technique is given by Press et al. [1992]. Here, the important

results are presented.

In the ME method, the functional A[bu] de�ning goodness of �t to the data is taken

as the scalar �1
2�

2(bu) = �1
2 jAbu�bj2, whose minimization yields an estimated pro�le bu

that generates simulated data consistent with the observed ci. The coe�cient �1
2 , which

comes from the exponent of an assumed multivariate normal likelihood function, has been

absorbed in the de�nition of the Lagrange multiplier � for the previously described methods,

but it is often shown explicitly in the ME development.

From arguments based on logical consistency, information theory, and statistical me-
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chanics, the ME regularizing functional is based on the generalized Shannon-Jaynes entropy,

S[bu;m] =

Z
dz

�bu(z)�m(z)� bu(z) log� bu(z)
m(z)

��
� 0; (45)

or in discretized form

S[bu;m] = �
MX
j=1

"buj �mj � buj log
 buj
mj

!#
(46)

where � is a positive constant. The maximum (S = 0) of this scalar functional occurs

when bu(z) equals m(z), and thus, in the absence of any conclusive evidence to support a

new pro�le bu(z), m(z) becomes the default pro�le that represents the analyst's best prior

estimate, or belief, about what the unknown concentration pro�le should be. Equation (45)

has been used to de�ne an entropic prior probability distribution of potential pro�les that

maximizes possible variations with respect to the assumed default model [Gull and Skilling

1985, 1989]. In this regard, entropic regularization of a degenerate inversion problem gives

the least possible weight to prior information that is introduced via m(z) to stabilize the

solution and to reduce the chance that inaccurate conclusions will be drawn from spurious

data.

At �rst glance, the explicit introduction of prior information may seem an unfair ad-

vantage for the ME algorithm. (It may even appear dangerously close to forcing a desired

conclusion from limited data!) However, an honest inspection of any inversion method will

reveal prior information in the form of implicit assumptions like the nature of continuity

between adjacent concentrations, the choice of a Lagrange multiplier that yields recon-

structions resembling results that have been seen before, and the construction of a response

matrix that captures what is known about the physics of the problem before the data are

collected. The sole motivation of regularization is, after all, to limit the solution space to a

set of physically realistic pro�les. The Bayesian philosophy supporting the use of an entropic

prior places the burden of proof on the data, forcing them to provide convincing evidence of

deviations from the default, while at the same time maximizing random possibilities with

respect to the default that are available as potential solutions.

For the special case that m(z) is constant for all z and that
R
dz u(z) is a �xed constant

for all possible trial pro�les, bu(z), the entropy functional becomes [Press 1992; Shultis et

al. 1996]

S[bu] = �
Z
dz bu(z) log[bu(z)]; (47)
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where constant terms have been omitted since they do not a�ect the optimization process.

It is this form of S that is often used in the ME method. However, in the PGNAA soil

contamination problem, there is no way to set the normalization of u(z) a priori for an

unknown pro�le, so the more general entropy functional of Eq. (45) is used.

The Bayesian posterior probability distribution is proportional to the likelihood proba-

bility of observing the ci given a pro�le u(z) multiplied by the prior probability of actually

having a given pro�le u(z). By maximizing this posterior distribution, the best estimator

of the contaminant pro�le bu(z) (or in discretized form bu) is obtained. This is achieved

by maximizing the functional Y [bu] = �S[bu] � 1
2�

2[bu], where � is a Lagrange multiplier.

Equivalently, the estimated contaminant pro�le is found from the following minimization

problem (after factoring a constant of �1
2 , letting � = 2� > 0 and de�ning H � �S � 0,

the negative entropy or negentropy):

minimize: �2(bu) + �H[bu;m]: (48)

From a comparison of this result to that of the general regularization method of Eq. (22),

it is seen that the nonlinear negentropy is now the regularizing functional and that �2

measures the mis�t between the data and any assumed concentration pro�le. In fact, the

optimization of Eq. (48) can be interpreted as maximizing the entropy subject to a constraint

on �2.

There are several important distinctions of the entropy functional compared to the other

regularization methods [Press et al. 1992]. First, S[bu;m] is de�ned using only local values

of bui, i.e., S[bu;m] sums the function bu � m � bu log(bu=m) over all depths, and a random

rearrangement of the bu=m values does not change S. By contrast the LR method uses

di�erence of bu between neighboring depths and, unlike the ME method, abrupt changes in

bu(z) will greatly a�ect the regularizing functional. Second, as any bui goes to zero the slope
of H becomes in�nite forcing the minimization problem to maintain a positive solution, i.e.

the positivity of the estimated pro�le is assured without the need to explicitly impose a

positivity constraint.

Because of the nonlinear negentropy term in Eq. (48), the process of �nding the optimum

pro�le cannot be performed analytically as in the BG method, nor can it be reduced to

a set of linear equations as in the LR method. Rather, numerical non-linear optimization

algorithms must be employed. Skilling and co-workers have developed an e�ective algorithm
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[Skilling and Bryan 1984; Gull and Skilling 1985] that has been used in the present work.

This algorithm is summarized in the Appendix.

4 Example Results

To determine the capabilities of the four regularization methods to predict soil contamina-

tion pro�les, several idealized pro�les were used. With these test pro�les for u(z), simulated

values of ci were evaluated from Eq. (5) using an adaptive Gaussian numerical integration

algorithm which is capable of achieving high accuracy. For the examples presented here, the

soil was assumed to be uniformly illuminated by normally incident 14-MeV neutrons. The

resulting thermal uence pro�les are those of Fig. 1 and the appropriate emission kernel

is that of Eqs. (9) and (11). Results very similar to those presented here are obtained for

neutrons from a point source above the soil as well as for neutrons emitted by 241Am/Be

or 252Cf sources.

For the examples presented here, chromium is the assumed contaminant and, mostly,

only the �ve capture-gamma photons (N = 5) with yields greater than 10% are used in

the simulation. An example set of simulated ci data generated in this manner is given in

Table 1. These values of ci, which are used in most of the examples, are for an idealized

detector that produces no statistical uncertainty or interference from scattered photons in

the measured ci. Thus, the relative error �i=ci is assumed to be negligibly small. Except

for the ME results which set �i=ci to a very small value, the covariance matrix S was taken

as the identity matrix. Finally, unless otherwise stated, problem parameters are as stated

in Table 1, the number of discrete depths is M = 51, and the PGNAA model discretization

is based on Eq. (19).

With such simulated data for ci, test contaminant pro�les were obtained by inversion of

Eq. (5) and compared to the actual pro�les shown by the heavy dashed lines in the �gures.

Additional examples are presented by Shultis et al. [1996a, 1996b].

4.1 Results for Linear Regularization

The estimated contaminant pro�le depends strongly on the parameter � that balances the

trade-o� between smoothness and accuracy of the pro�le as shown in Fig. 2. The smaller

� the better is the �t to the data, i.e., the smaller �2 � A[bu] � jAbu� bj2 becomes. By
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contrast, as � becomes large, the inverted pro�le becomes smoother and the �t becomes less

accurate, i.e, buTHbu becomes smaller while �2 becomes larger. This behavior is illustrated

in Fig. 3 which shows how �2 and buTHbu vary with �. In these examples, for � � 10 the

inverted pro�le assumes a strict linear shape as prescribed by the linear smoothing constraint

used. At the other extreme when � = 10�13 the inverted pro�les agrees very closely with the

actual pro�le. However, if � is made even smaller, the e�ect of the smoothing regularization

term is lost because of the �nite precision of the computer and numerical instabilities begin

to develop as shown in the pro�le in Fig. 2 obtained with � = 3� 10�15.

Since the simulated ci values used in these examples are exact, i.e., have no associated

statistical uncertainties, the optimal (most accurate) computed pro�le is obtained with the

smallest value of � that can be used before numerical instabilities appear. These best-�t

pro�les, i.e., those with the smallest �2, represent the maximum capability of the inversion

method since any real data for the ci will have uncertainties and thus contain less information

for the inversion process.

In Figs. 4 and 5 optimally resolved inverted pro�les for step and Gaussian pro�les are

shown for the three smoothing regularization methods considered in the study. As can be

seen, the estimated pro�les are quite reasonable, especially for the Gaussian pro�le of Fig. 5.

The three regularization smoothing methods give nearly the same results, di�ering primarily

at large soil depths where spurious negative and positive variations are characteristically

produced.

Fig. 5 also demonstrates the e�ect of using di�erent numbers of capture-gamma photons.

Generally, as more ci are used the better are the computed results. However the increased

accuracy in going from 5 chromium photons (minimum capture photon yield 10%) to 10

photons (minimum yield 6%) is surprisingly slight. The three smoothing methods pro-

duce nearly identical results for the Gaussian peak. Only for the spurious oscillations at

deep depths, where u(z) is negligibly small, do di�erences become apparent for the three

smoothing schemes and for the number of photons used.

As seen in these examples, the linear regularization method is capable of extracting

quite reasonable pro�les given only a small number of ci values (here 5). However, the

inverted pro�les for all three regularization methods typically exhibit large negative and even

positive concentrations at large (optical) depths in the soil where u(z) is usually extremely

small. Also, when u(z) is small near the surface, the computed pro�les often yield negative
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concentration estimates near the surface. These spurious values are characteristic artifacts

of the inversion process since linear regularization imposes no positivity constraint on the

bu(z).
One simplistic approach is simply to ignore such negative concentration estimates and

to set the o�ending value to zero. Similarly, large positive values at great depth may be false

and should likewise be ignored, particularly if preceded by a region of negative estimates.

However, such an ad hoc procedure is not very satisfying.

4.2 Results for Constrained Linear Regularization

In Fig. 6 the converged CLR iterative solution based on Eq. (33) for a chromium contami-

nant bilinear pro�le is shown along with the LR solution. From this �gure, it is seen that

the CLR method produces a much better estimate of the contaminant pro�le than does

the unconstrained LR method. The great disadvantage of the CLR method is the large

number of iterations typically required to achieved a converged solution. This need for a

large number of iterations is illustrated in Fig. 7 for a step pro�le. Millions of iterations

may be required for convergence; however, quite usable pro�les are realized before conver-

gence. Although the converged pro�le is independent of the initial pro�le used to start

the iterations, experience has shown that it is usually best to start with the null solution,

bu(0)(z) = 0, since spurious positive concentrations at great depth (see Fig. 4) require an

extreme number of iterations to suppress.

Constrained iterative results for a Gaussian test pro�le are shown in Fig. 8. It is seen

again that the CLR method produces computed pro�les that agree much more closely with

the actual pro�les than do results of the LR method. One important feature of the CLR

solution is that the inverted pro�le is less sensitive to the assumed value of � than is the

LR solution. This e�ect is seen in Fig. 8 where the iterative solutions for � = 10�2 and

� = 10�6 are seen to be very similar to the LR solutions. Since �, which speci�es the balance

between smoothness and accuracy is di�cult to determine a priori, the CLR method is

very attractive, not only because it eliminates unrealistic negative concentrations, but also

because it is relatively insensitive to �. The number of iterations required for convergence

is found to increases as � decreases, i.e., the stronger the smoothing component the faster is

the convergence. Moreover, as � becomes very small the computed pro�le typically displays

a saw-tooth pattern after only a few iterations (see Fig. 9). Fortunately, these saw-tooth
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patterns smooth out as the number of iterations increases, as is seen in Fig. 9. However,

this e�ect becomes more severe as � decreases, and eventually numerical instabilities prevail

and no convergence is achieved. Fortunately, the converged pro�le is rather insensitive to

the value of � used, and since convergence is faster and less biased toward the surface for

larger values of �, the CLR method should generally be employed with a value of � that is

several orders of magnitude greater than that used in the linear regularization method.

By far the most severe test of inversion techniques is provided by discontinuities in the

contaminant pro�le, particularly if they occur at deep depths. In Figs. 10 and 11 the ability

of the CLR and the LR methods, respectively, is demonstrated for resolving a uniformly

contaminated stratum at di�erent depths. From these �gures, it is clear that the CLR

method is far superior at resolving contaminant layers, although at the expense of many

millions of times the computing e�ort.

4.3 Backus-Gilbert Results

The usual positivity of the inverted pro�le for the soil contamination problem with minimal

noise is an obvious advantage of the BG method over the LR method. Moreover, the BG

attempt to maximize the resolution of sudden changes in the concentration pro�le is very

appealing for this particular application.

In Fig. 12 BG results for a bilinear test pro�le are shown for an inversion based on

N = 5 photons. Similar results are shown in Fig. 13 for 10 photons. As can be seen the

inverted pro�les depend on �. As expected, with large �, e.g., � = 1, a very smooth stable

pro�le is obtained, which resolves the pro�le peak poorly. As � decreases more importance

is placed on resolving pro�le changes and better agreement with the exact pro�le (dashed

lines) is obtained. From these �gures it is seen also that as more photon energies are used,

the BG method is able to resolve the pro�le to deeper depths.

Similar BG results are shown for step pro�les in Figs. 14 and 15. As can be seen, the BG

method can resolve contaminated layers if they are su�ciently close to the surface; however,

it resolves deeply buried layers very poorly. Of all the methods considered in this study, the

BG method was the poorest at �nding deeply buried structure in the contaminant pro�les.

O�setting this de�ciency of the BG method is its ability to yield, for the present soil

contamination problem with noiseless data, non-negative estimates of the contaminant pro-

�le. More important, of all the inversion methods considered in this study, the BG pro�les
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were found to be least sensitive to the value of �. As long as a value of � is chosen between

extremely large values (when the regularization dominates the inversion) and extremely

small values (when the e�ect of regularization is weak), the inverted pro�le is almost inde-

pendent of �. It was found that even if exceptionally small values of � are used so that the

e�ect of regularization is lost, the BG method still usually yields a reasonable result even

though severe numerical instabilities are produced in all the other methods. Because the a

priori selection of an appropriate value for � for any of the inversion methods is generally

not obvious, the insensitivity of the BG technique to the � value is a very useful feature of

this method.

4.4 Maximum Entropy Results

In this study, the generalized Shannon-Jaynes entropy function of Eq. (45) was used in the

maximum entropy implementation. This choice allows a default contaminant distribution

m(z) to be speci�ed to which the inversion process reverts when the PGNAA data ci are

not capable of supporting any signi�cant di�erence from the default pro�le. The set of

algorithms and subroutines distributed commercially as MEMSys3 [Gull and Skilling 1989]

was used to perform the nonlinear optimization necessary to �nd the bu(z). Also, unlike the
previous examples, which were based on quadratic discretization of Section 2.4.2, the ME

examples presented here are based on the piece-wise linear approximation of Section 2.4.1.

Figure 16 shows the e�ect of assuming a constant default that is equal to the peak of

the bilinear test pro�le. As observed for the LR method, the reconstruction is sensitive to

the value chosen for the Lagrange multiplier. In this section, however, curves have been

labeled with associated values of the �t parameter �2=N (where N = 5) rather than with

the values of � directly. It is interesting to note transitions as the solutions pass from

strongly regularized, very \smooth" �ts (�2=N = 106) to very \tight" �ts (�2=N = 10�9)

along the ME trajectory. Highly regularized solutions attribute the data to a \bathtub"

concentration pro�le with a thin layer at the surface and a thick layer of minimal contri-

bution beyond 20 cm. As tighter agreement with the data is enforced, the shallow peak

\migrates" to the depth of the actual maximum while the concentration in the adjacent

tails is suppressed. Very tight �ts to the data introduce a second \mode" near the surface

rather than broadening the existing, well located peak. This behavior suggests a sensitivity

to, or an exaggeration of, the exponential integral response kernel, Eq. (11), which declines
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rapidly with depth. Note that all reconstructions return to the default of m(z) = 1 when

deviations are no longer supported by the forward model within the current value of �2.

Reconstructions for the bilinear test pro�le are illustrated in Fig. 17 for an assumed

default of m(z) = 0:1. Here, the reconstructed peaks are much broader and demonstrate

some degree of insensitivity for values of �2=N <� 10�3. It was observed that any constant

default pro�le within a factor of 10 higher or lower than the actual peak provided a rea-

sonable set of reconstructions over the range of �2. Furthermore, subtle clues like pro�le

suppression and growth in the tails, attempted bi-modal �ts, and insensitivity to the La-

grange multiplier are available to an experienced user for the purpose of manually iterating

m(z) to achieve even better agreement with an unknown concentration pro�le. For constant

default models below m(z) = 0:01, reconstructions were produced with narrow peaks and

exaggerated concentrations that could not be considered acceptable. However, consistent

locations and behavior of the pro�le modes provide strong evidence for a more reasonable

choice of m(z).

ME results for a single broad step pro�le are not illustrated here, but they exhibit much

the same behavior illustrated in Figs. 16 and 17. By visual examination, the \best" ME

results are comparable to those for CLR presented in Fig. 7, but show more sensitivity

to the Lagrange multiplier and do a better job of identifying the location of the leading

step concentration change. Very tight �ts to the data induce a bi-modal reconstruction

that equally overestimates the concentration near the corners of the underlying pro�le and

underestimates the concentration near the center. This strongly resembles a Fourier recon-

struction of a square pulse, and immediately suggests averaging the peaks to introduce a

better default model. Reasonable pro�les were obtained with constant default models as

low as m(z) = 10�6 without serious side-e�ects, and in many respects, ME performed more

predictably for the step pro�le than for the bilinear example.

The apparently innocuous assumption of a constant default value actually introduces

a great deal of information about the smoothness of acceptable pro�les and it suggests a

reasonable normalization or total mass of contaminant that can be present in the pro�le.

Consider, for comparison, the truly non-informative prior that would be represented by an

m(z) composed of randomly chosen, uncorrelated concentrations at each discrete depth. In

this respect, the default model supplies to ME what smoothing constraints supply to the

LR method.
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All the ME results presented here share the common features of \top-to-bottom" con-

vergence with tighter data agreement, preferred sensitivity to potential concentrations at

shallower depths, return to the assumed default at great depths, and positivity. In addition,

the ME algorithm was found to be very fast, converging in a few seconds time with usually

far fewer that 1000 iterations. More iterations were required to reach the tightest �ts where

lack of precision between the simulated data ci and the matrix reconstruction Rbu on the

same order as the target parameter �2=N seemed to introduce slowly damped oscillations

in the ME trajectory. Fits tighter than �2=N = 10�9 could not be achieved before the

algorithm \stalled" with no clear direction discernible for the next incremental vector step.

This precision limit might be improved with more careful attention to the way surrogate

data are generated, but it would o�er no practical advantage since real data will have much

larger uncertainties. In comparison with the LR method, it appears that adherence to the

ME trajectory, beginning with a rational choice for the default m(z) e�ectively prevents

the algorithm from \wandering o�" towards numerically acceptable but physically absurd

solutions.

Figure 18 illustrates the capability of the ME method to resolve a uniformly contami-

nated stratum located at various depths. All of the results are presented on one �gure for

convenience, but the six 10-cm source zones were de�ned for separate calculations. From

cursory parametric studies of �2=N were chosen �ts with the most visual appeal to rep-

resent the best possible reconstructions; corresponding values of �2=N tended to decrease

with increasing depth of the contaminant zone, and a default model of m(z) = 10�6 was

used throughout. ME appears to perform very well in terms of locating the leading edge

and the maximum width of the source zone, even for the deeper strata. Peak concentra-

tions tend to be overestimated with increasing depth, but it is likely that ME can continue

to identify deeper sources until the magnitude of the surrogate data approach that of the

discrepancy between ci and Rbu.
As a severe test of ME's resolving power, a bi-modal example problem for two sepa-

rated contaminated layers was considered (see Fig. 19). Only the ME method was able to

resolve the second more deeply buried contaminated layer. Pro�les of this type represent

a signi�cant challenge for inversion algorithms because contributions to the data from the

second (deeper) stratum are dominated by those of the �rst (shallow) stratum. Again, with

decreasing �2 the solution \grows" over the �rst layer before stretching out to locate the
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second. At the tightest available criterion of 10�7, however, ME follows its proclivity for

surface layers and introduces a spurious third, very thin, very high concentration peak at

the surface, while signi�cantly narrowing the peak over the �rst source zone. Given only

�ve data points and a simple attenuation physics model, it is amazing that the presence of

the second peak is recognized at all. In fact, none of the other methods provide this level of

discrimination, and it is doubtful that ME would identify the peak using real data. Since

relative contributions of the second source are so small, one must look to the ratios between

data values to �nd information regarding energy-dependent attenuation that directs the

algorithm towards a second peak. This fact has important implications for the appropriate

selection of available channels from a composite gamma spectrum.

5 Conclusions

From the results of this study, it has been shown that the four regularization methods

presented here are capable of estimating concentration pro�les from a surprisingly few mea-

sured intensities of capture-gamma photons. Although the linear regularization method is

the most computationally e�cient method, it su�ers from the tendency to produce spurious

negative or positive values at large soil depths. While the linear regularization method with

iterative positivity constraints avoids this di�culty, it is computationally very expensive

and useful only when detailed predictions are needed. The Backus-Gilbert method pro-

duces nonnegative pro�les at modest computational e�ort and yields good resolution for

abrupt changes in the contaminant concentrations if the changes are close to the surface.

Finally, the ME method also e�ciently produces non-negative pro�les which were found in

most cases to be superior to those of the other three methods. Moreover, the ability of the

ME method to incorporate prior knowledge into the inversion process makes it attractive

for performing practical analyses. These conclusions are based on analyses of simulated

data without statistical measurement error. As such these results represent upper limits on

the capabilities of the four methods for the soil contamination problem. Future work will

assess the importance of input data errors on the ability of the di�erent inversion methods

to predict contaminant pro�les.
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Appendix: ME Non-Linear Optimization

The Skilling algorithm1 is based on maximization of the scalar functional Y = �S � 1
2�

2,

which is a function ofM variables buj . As for the LR and CLR methods, we seek a stationary

value of Y such that the column vector @Y=@bu = 0. For a stationary value to be a maximum

it is necessary that �@(@Y=@bu)=@buT be a positive-de�nite matrix for the corresponding

value of bu. Thus, the desired solution must obey, �@S=@bu = 1
2@�

2=@bu. From Eq. (46) it

is seen that @S=@bu is a column vector with elements logmj � log buj . Equation (21) can be

written in matrix form as �2 = (c�Rbu)TS�1(c�Rbu), so that di�erentiation with respect

to bu, using the substitution z = c�Rbu, the chain-rule (@y=@buT)T = (@z=@buT )T (@y=@z),
and the relations @(Rbu)=@buT = R and @(zTS�1z)=@z =2S�1z, gives

@�2

@bu =

�
@

@buT (c�Rbu)�T � @

@(c�Rbu)
n
(c�Rbu)TS�1(c�Rbu)o (49)

= �2RTS�1(c �Rbu); (50)

This is essentially the same procedure used to derive the normal equations for least squares

optimization, which are stated in Eq. (26) in the context of linear regularization.

Now, the non-linear equation to be solved for ME inversion can be stated explicitly as,

@Y=@bu � rY(bu) = 0 = �(logm� log bu) +RTS�1(c�Rbu); (51)

and the symmetric, negative Hessian matrix as,

�@(@Y=@bu)=@buT � �Q = @
n
� log bu+RTS�1Rbuo =@buT (52)

= � [bu�1] +RTS�1R: (53)

Note that when bu approaches 0, �Q becomes strongly diagonally dominant. When all

elements are non-negative and the matrix is non-singular, �Q is positive-de�nite as required

for the solution of Eq. (51) to be a maximum.

A conceptual, iterative solution for Eq. (51) can be written as,

log(m=bun+1) = �RTS�1(c�Rbun)=�; (54)

1It should be noted that Skilling's development of ME in the context of Bayesian methods is much more

advanced than the theory presented here. The following approach represents the \historic" application of

simple ME regularization that compares most readily with other methods presented in this paper.
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or

bun+1 =m � exp
n
RTS�1(c�Rbun)=�o ; (55)

where log, exp, = and � operate element by element (= and � denoting simple division

and multiplication, respectively), and the superscripts denote successive approximations to

bu. No matter what values the components of bun and the corresponding data estimates

Rbun may take, all components of the next iteration, bun+1, will be non-negative. This

demonstrates how ME regularization can naturally enforce positivity without the external

constraints needed by other methods. It is also apparent in this form that a converged

solution for bu depends on the value chosen for the Lagrange multiplier �. As � ! 0,

converged pro�les approach the least squares solution, with their inherent degeneracy. As

� ! 1, complete emphasis is given to entropic regularization which is maximized at the

default pro�le m.

The Bayesian philosophy of \updating" a current state of knowledge by incorporat-

ing new data with what is already known, forces one to think carefully about the prior

information that may be available to help constrain pro�le reconstructions. One obvious

constraint is the condition of positivity; physical concentration pro�les cannot be negative.

Also, real pro�les cannot be unbounded. There may be a physical saturation limit or some

information about the total mass of contaminant released in a spill that can be used to

set a maximum. Given this emphasis on a well-de�ned prior model, the iterative solution

method of Skilling begins with the assumption that bu = m, where S = 0 and � = 1.

To reach a given target value of �, the algorithm takes incremental steps away from the

default in vector directions supported by the data. Successive solutions, corresponding to

small adjustments in � towards the target, de�ne a ME trajectory in the solution space

of all possible bu. Bayesian arguments also exist to support an a priori selection of the

Lagrange multiplier, which is most often measured in terms of expectation values for the

�t parameter �2, such as �2 = N , the number of independent data points. Iteration stops

when the solution has reached the corresponding value of � along the ME trajectory or

when the data can no longer discriminate a meaningful direction for the next step.

Iteration along the ME trajectory proceeds by an algorithm based on a modi�ed New-

ton's method. The scalar Y [u] is �rst expanded about the current solution bu by Taylor's
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series, which to the quadratic approximation is,

Y [bu+ �bu] = Y [bu] + �buTrY [bu] + 1

2
�buTQ�bu (56)

Di�erentiation of Eq. (56) with respect to vector directions �bu yields the gradient at the new

solution \point" (a complete concentration pro�le in M -dimensional vector space), which is

forced to be stationary by setting @Y [bu+ �bu]=@(�bu) = 0. Use of this condition in Eq. (56)

shows that the next incremental step �bu is given by the equation rY [bu] +Q�bu = 0 whose

solution is

�bu = �Q�1rY [bu] = n
�[bu�1] +RTS�1R

o�1 n
�(logm=bu) +RTS�1(c�Rbu)o : (57)

In order for the Newton direction �bu to move the solution towards the desired maximum,

frY [bu]gT�bu < 0, so by rearranging Eq. (57), �buTQ�bu > 0, i.e., the Hessian matrix must

be positive-de�nite. Press warns that far from the maximum there is no guarantee the Q

will have this property, which may lead to steps away from the desired solution. Even when

Q is positive-de�nite, large steps in the Newton direction can lead to points too far away

for the quadratic approximation to be valid. So-called \quasi-Newton" methods treat these

di�culties by building approximate Hessian matrices that are forced to be positive-de�nite,

and by backtracking along the full Newton step to a point that lies with a trust region that

supports the quadratic approximation. The Skilling algorithm de�nes the trust region with

an e�ective radius of,

r20 � (�r)2 = �buT [bu�1]�bu: (58)

The value of � appearing in Q is set just large enough that this constraint is obeyed for each

iteration of � along the ME trajectory. Again, proximity to a well-de�ned default pro�le

m(z) encourages smooth convergence.
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Table 1. Calculated ci values for chromium contam-
inated soil distributed with the bilinear pro�le shown
in Fig. 2. Problem parameters: bilinear pro�le; dry
dense soil of density 1.77 g/cm3); Jo = 1; �i = 1;
�d = �=2.

Energy Yield per �i ci
(MeV) capture (cm�1)

0.7492 .1104 0.130030 0.19872
0.8351 .2686 0.123690 0.53652
7.9393 .1275 0.043362 1.46361
8.8841 .2697 0.042026 3.22336
9.7203 .1097 0.041009 1.35258

Figure 1. Thermal uence pro�les in the �ve representative soils used in this
study. The soil surface is uniformly and perpendicularly irradiated by 14-MeV
neutrons with a unit inward ow at the surface.
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Figure 2. LR estimated pro�les using linear
smoothing for several values or �. Exact bilinear
pro�le is shown by the heavy dashed line.

Figure 3. Variation of the accuracy (�2) and the
smoothing regularization (buTHbu) with � for the
results in Fig. 2.

Figure 4. Optimal LR inversion (� ' 10�9) a
step pro�le using three smoothing functionals.

Figure 5. Optimal LR inversion (� ' 10�9) of a
Gaussian pro�le using linear, quadratic and cubic
smoothing functionals based on 5 and 10 photon
energies.
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Figure 6. Optimal LR and CLR inversion for
the bilinear pro�le with cubic smoothing. Exact
pro�le is shown by the heavy dashed line.

Figure 7. CLR inversion for the step pro�le after
various number of iterations for � = 10�4. Start-
ing pro�le was that obtained with LR inversion.

Figure 8. CLR pro�les (solid lines) and LR pro-
�les (broken lines) for a Gaussian pro�le for two
di�erent � values. Cubic smoothing was used and
CLR iterations continued until convergence.

Figure 9. CLR inversion of a Gaussian pro�le
after various number of iterations. Starting pro�le
is u(0)LR(z) = 0. Also show by the broken line is the
LR calculated pro�le.
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Figure 10. Converged CLR pro�les (peaked
curves) for a uniformly contaminated stratum at
various depths. The rectangular pro�les are the
exact pro�les (solid lines rather than dashed lines
are used for clarity).

Figure 11. The LR pro�les for the uniformly
contaminated strata of Fig. 10. The number pairs
indicate the corresponding inverted pro�le with
the exact pro�le.

Figure 12. BG bilinear pro�le for several values
of �. Simulated data were based on the 5 most
abundant Cr capture-gamma photons.

Figure 13. BG bilinear pro�le for several values
of �. Simulated data were based on the 10 most
abundant Cr capture-gamma photons.

34



Figure 14. BG bilinear pro�le for several values
of �. Simulated data were based on the 5 most
abundant Cr capture-gamma photons.

Figure 15. BG pro�les (peaked curves) for a uni-
formly contaminated stratum at various depths.
The rectangular pro�les are the exact pro�les
(solid lines rather than dashed lines are used for
clarity).

Figure 16. ME computed bilinear pro�les for
several values of the data �t metric �2=N . The
assumed default pro�le is m(z) = 1.

Figure 17. ME computed bilinear pro�les for
several values of the data �t metric �2=N . The
assumed default pro�le is m(z) = 0:1.
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Figure 18. Optimal ME computed pro�les for a
uniformly contaminated layer (rectangles) at var-
ious depths.

Figure 19. Optimal ME and CLR computed
pro�les for two separated uniformly contaminated
layers (dashed line).
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