DATA FOR THE CALCULATION OF ALBEDOS FROM CONCRETE IRON, LEAD, AND WATER FOR PHOTONS AND NEUTRONS

by

R.C. Brockhoff and J.K. Shultis

Department of Mechanical and Nuclear Engineering Kansas State University Manhattan, Kansas 55606

published as

Report 301

ENGINEERING EXPERIMENT STATION

College of Engineering Kansas State University Manhattan, Kansas 66506

September 2005

revised March 2006

ABSTRACT

This report tabulates newly evaluated parameters for several empirical differential dose albedo formulas. The albedos considered are (1) two approximations for the photon albedo, (2) a new approximation for the neutron albedo, and (3) the secondary-photon albedo for incident neutrons. Albedo data is provided for four materials: concrete, iron, lead, and water. Unlike previous compilations of albedo data, modern dosimetric units have been employed. Data are presented for (1) the ambient dose equivalent $H^*(10\text{mm})$ and (2) the effective dose equivalent for anteroposterior (AP) illumination of the ICRP anthropomorphic phantom.

The data in this report has been extracted from the appendices of the dissertation *Calculation* of the Albedos for Neutrons and Photons by R.C. Brockhoff, Kansas State University, 2003.

Introduction

The calculation of how radiation incident on a surface is reemitted through the surface toward some point of interest is a frequently encountered problem in radiation shielding. Transport techniques are generally required for detailed estimation of reflected doses. But under certain circumstances a simplified approach based on the albedo concept can be used with great effect. These conditions are¹ (1) that the displacement on the surface between the entrance and exit of the radiation is small compared to the problem dimensions, (2) that the reflecting medium is optically thick, and (3) that scattering between the radiation source and surface and between the surface and point of interest is negligible. The use of albedo techniques is central to many radiation streaming codes and has been widely used as an alternative to much more expensive transport calculations.

Key to the albedo technique is the availability of either a large set of albedo data or, preferably, an empirical formula that approximates the albedo over the range of source energies and incident and exit radiation directions involved in a particular problem. Previously proposed neutron and photon albedo approximating formulas have been based on limited energy-angular ranges, a single reflecting material, old cross section data, and, most important, obsolete fluence-to-dose response functions. In this report, differential neutron dose albedo functions, based on modern cross section and response function data, are presented.

1.1 Previous Albedo Studies

1.1.1 The Photon Albedo

One of the first approximate albedo formulas was the two-parameter semi-empirical approximation devised by Chilton and Huddleston to model the photon albedo.² The parameters, which depend on the initial photon energy, were obtained by fits to results of Monte Carlo calculations for concrete,³ and later extended to water, iron, and lead.⁴ Because of the limited accuracy of the Chilton-Huddleston formula, Chilton later proposed an improved seven parameter formula⁵ that is still widely used in shielding calculations.

Although these two approximations see wide use, the parameters for them are available for very few source energies. Additionally, these approximations are based on air kerma rather than dose equivalent responses, although the albedo, being the ratio of two doses, is for photons relatively insensitive to the type of dose employed.

1.1.2 The Neutron Albedo

There is much data in the literature for neutron albedos and for the associated secondary-photon doses. Early significant contributions included those of Maerker and Muckenthaler,⁶ who performed

both detailed calculational and experimental evaluations for concrete, and by Allen, Futterer and Wright⁷ who make albedo calculations for monoenergetic fast neutrons incident on a variety of materials. French and Wells⁸ derived an empirical formula for the azimuthally averaged data of Allen et al., which is restricted to incident directions of less than 70 degrees from the surface normal. Also using the same fast-neutron data, Song, Huddleston and Chilton proposed a fast-neutron formula with azimuthal dependence.⁹ Maerker and Muckenthaler in their 1965 study also proposed a 24-parameter formula obtained by a fit to their calculated concrete albedos.⁶ Extensive computerized sets of fast-neutron albedo data are also available, such as, SAIL,¹⁰ BREEZE-II,¹¹ and that of Wang.¹²

A neutron albedo approximation for intermediate-energy neutrons (0.5eV to 0.2 MeV) has been proposed by Coleman et al. for steel-reinforced concrete.¹³ Formulas for the thermal-neutron albedo have been proposed by Wells¹⁴ and Maerker and Muckenthaler,¹⁵ and an analytical onespeed transport result by Chandrasekhar¹⁶ has also been studied for use as a thermal-neutron albedo formula.^{15,17}

Although not strictly part of the albedo concept, the emergence of secondary gamma photons from a surface upon which neutrons are incident has be studied by Wells,¹⁴ Selph¹⁸ and Cavanaugh,¹⁹ and formulas for the secondary-photon albedo from concrete have been suggested by Wells¹⁴ and Maerker and Muckenthaler.¹⁵ For a more detailed survey of previous studies on the neutron albedo, the reader is referred to Selph¹⁸ and Shultis and Faw.¹

1.2 Need for Revised Neutron Albedos

Unlike compilations or formulas for albedos for monoenergetic incident photons, it is difficult to interpolate similar neutron albedos because of the many resonances in the neutron cross sections. To account for the usual continuous distribution of fast neutrons, it is preferable to obtain albedos for incident neutrons in various contiguous fast-neutron energy bins. However, many previous fast-neutron albedo studies are for monoenergetic sources and hence are of limited practical utility.

Moreover, most neutron albedo approximating formulas are based on very old neutron interaction data, on only a few incident directions, and are available for only a single reflecting material. For example, Maerker and Muckenthaler's 24-parameter, fast-neutron, dose albedo formula for concrete is based on only four incident angles (45, 50, 75 and 85 degrees with respect to the surface normal) and on old cross section data and the Henderson (tissue kerma) fluence-to-dose response function available before 1962.⁶

Perhaps the most important reason to revisit the neutron albedo is that, unlike photon albedos, neutron dose albedos are extremely dependent on the dose response function used. Previous neutron albedo work has mostly been based on air kerma or the Henderson (tissue kerma) response function. But as seen from Fig. 1, these response functions are quite different from modern neutron response functions. Moreover, the ratios between these various response functions are strong functions of the neutron energy, and, hence, dose albedos calculated with one response function cannot be converted to another by simply multiplying by a single conversion constant (as often can be done for most photon dose albedos).

1.3 THEORY

To calculate the albedo one first finds the current of particles emerging from the plane surface of a homogeneous halfspace that is illuminated uniformly by a plane-parallel, monoenergetic beam of radiation incident on the surface at an angle θ_o with respect to the surface normal **n** (see Fig. 2). The incident particle flow, in dose units, across a unit area of the surface is related to the incident fluence Φ_o as

$$J_n^{in} = |\mathbf{n} \cdot \mathbf{\Omega}_o| \Phi_o R(E_o) = \Phi_o \cos \theta_o R(E_o), \tag{1.1}$$

Figure 1.1: Comparison of modern neutron dose functions with kerma response functions, used in much early albedo work. Sources are: Henderson,²⁰ tissue/air kerma,¹ NCRP-1971,²¹ ICRP-1987,²² ICRP-1996.²³

where $R(E_o)$ is the fluence-to-dose conversion factor (response function) for the incident radiation of energy E_o . The total flow or current out of a unit area of the surface in a unit solid angle about the direction $\Omega(\theta, \psi)$, $\mathbf{n} \cdot \mathbf{\Omega} > 0$, again in dose units, can be expressed as

$$J_n^{out}(\theta,\psi) = \int_0^{E_{\max}} J_n^{out}(E,\theta,\psi) R(E) \, dE = \int_0^{E_{\max}} \Phi(E,\theta,\psi) \cos\theta R(E) \, dE, \tag{1.2}$$

where $J_n^{out}(\theta, \psi, E)$ and $\Phi(\theta, \psi, E)$ are, respectively, the angular energy-dependent flow and fluence at the surface, and where E_{max} is the maximum particle energy.

The differential dose albedo is defined as the ratio of the outward to inward flows, 2 namely, 1,24

$$\alpha_{D}(E_{o},\theta_{o};\theta,\psi) \equiv \frac{J_{n}^{out}(\theta,\psi)}{J_{n}^{in}},$$
(1.3)

which, from Eq. (1.2), yields

$$\alpha_{\scriptscriptstyle D}(E_o,\theta_o;\theta,\psi) = \frac{1}{J_n^{in}} \int_0^{E_{\rm max}} J_n^{out}(\theta,\psi,E) R(E) \, dE.$$
(1.4)

 $^{^{2}}$ Many early albedo studies used slightly different definitions, such as the ratio of outward flow to incident fluence or the ratio of outward fluence to incident fluence, and it is important to distinguish among them when comparing different albedo results.

Figure 1.2: Particles incident and reflected from the surface of a halfspace.

For photon albedos, the incident energy E_o is a specified discrete energy. Because photon cross sections vary smoothly with energy above the K-edge, photon albedos are readily interpolated between tabulated energies. By contrast, the many resonances in the neutron albedo preclude interpolation of albedos between discrete energies. For neutrons the albedo of Eq. (1.4) is averaged over various fast-neutron energy intervals or a fission spectrum to obtain albedos for a corresponding range of incident neutron energies by selecting the incident neutron energy from the appropriate distribution.

1.4 MCNP Calculation of the Albedo

We used the general purpose Monte Carlo code $MCNP^{25}$ to calculate the albedo reflected from thick slabs of various materials. In particular, we considered a homogeneous cylindrical slab surrounded by a vacuum. The incident neutrons were modeled by a point monodirectional source positioned just inside the center of the circular scoring (reflecting) surface. This was done to facilitate scoring because all particles crossing this surface must be outgoing (reflected) particles. The slab thickness and radius were sufficiently large (1000 cm) so that negligible numbers of neutrons were transmitted through the slab or radial surface. The energy of the source neutrons was sampled uniformly over an energy group or from a fission neutron distribution.

For the albedo calculation, the outgoing current from the reflecting surface must be tallied in terms of the outgoing polar angle θ and the outgoing azimuthal angle ψ . MCNP provides a surface current tally, called the F1 tally, that scores the number of particles crossing a surface in all directions, namely

Tally F1 =
$$\int_{A} \int_{-1}^{1} \int_{0}^{2\pi} \int_{E} J(\vec{r}, E, \theta, \psi) R(E) \, dE \, d\cos\theta \, d\psi \, dA.$$
 (1.5)

where R(E) is a user specified response function. However, by default MCNP does not allow the user to bin this current tally in terms of both θ and ψ . Therefore, the tally was modified through the use of the TALLYX user routine. This option, which permits the user to modify a tally, was used here to dissagregate the F1 tally for reflected particles into a set of angular bins or subtallies, each of which corresponded to a small range of the θ and ψ reflection directions.

In this study we used $N_{\theta} = 9$ intervals equally spaced between 0 and 90° in polar angle and $N_{\psi} = 18$ intervals equally spaced between 0 and 180° in azimuth. Because the reflected photon field

is symmetric about $\psi = 180^{\circ}$, particles reflected with $\psi > 180^{\circ}$ can be binned in the corresponding $(360^{\circ} - \psi)$ bin. Thus a total of $N_{\theta} \times N_{\psi} = 162$ angular bins were used. The bin number *ibu* corresponding to a particular value of θ and ψ is

$$ibu = int\left(\frac{\theta N_{\theta}}{90}\right) + N_{\theta} int\left(\frac{\psi N_{\psi}}{180}\right) + 1.$$
(1.6)

To score related quantities, such as the outgoing angles for a particle passing through the surface, the user must specify the scoring bin limits on the "FU card". Here the appropriate FU card would be FU1 1 160i 162.

The tallies in each scoring bin are normalized to one source photon and thus represent, in the notation of the previous section,

tally bin(i) =
$$\frac{2}{J_n^{in}} \int_{\Delta\cos\theta_i} \int_{\Delta\psi_i} \int_0^\infty J_n^{out}(E,\theta,\psi) R(E) \, d(\cos\theta) \, d\psi \, dE$$
 (1.7)

where $\Delta \cos \theta \Delta \psi$ is the solid angle covered by bin(i). The factor of 2 in this result arises from the ψ -symmetry used in the binning process. Finally, if θ and ψ are the centroid angles of a bin with a tally denoted by $T(\theta, \psi)$, the differential dose albedo is estimated from

$$\alpha_{\rm D}(E_o,\theta_o;\theta,\psi) = \frac{T(\theta,\psi)}{2\,\Delta\cos\theta\,\Delta\psi},\tag{1.8}$$

where $\Delta \cos \theta$ varies from bin to bin. Here E_o is the incident photon energy, or, for neutrons, E_o is replaced by ΔE , the energy distribution from which energies of the incident neutrons are uniformly sampled.

1.5 Results

The MCNP calculated differential dose albedos were used to obtain extensive sets of values for a wide range of incident energies, incident directions, and reflected directions. To make easy use of these results, empirical approximating functions were sought that could accurately reproduce the calculated albedos. The parameters in these empirical albedo functions were estimated by fitting the approximating functions to the MCNP calculated values. A global fit was used that minimized the maximum absolute error between the function and the calculated data.

The range of variables and the materials used in the calculations are summarized below. Then in the following chapters, the empirical approximating functions and tables of their coefficients are presented.

1.5.1 Photon Albedo

In this report, we present more comprehensive sets of parameters for Chilton's two- and sevenparameter photon albedo formulas.^{2,5} The MCNP Monte Carlo code was used to obtain albedo data for incident gamma energies of 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.25, 2.0, 4.0, 6.0, 8.0, and 10.0 MeV, for a wide range of incident and reflected directions. The calculated dose albedos were based on three dosimetric response functions, namely, those for exposure, effective dose equivalent (anteroposterior geometry), and ambient dose equivalent. Chilton's two- and seven-parameter formulas were then fit to the MCNP calculated photon albedo values.

The albedo approximating formulas and the the resulting parameters for concrete, lead, iron, and water are presented in Chapter 2. These results have also been published elsewhere.²⁶

1.5.2 Neutron Albedo

The MCNP albedo model was also used to calculate the neutron albedo for 9 monodirectional angles of incidence, θ_o , of 5, 15, 25, 35, 45, 55, 65, 75, and 85 degrees on infinite slabs of natural iron, water, natural lead, and NBS 04 concrete. NBS 04 concrete represents "ordinary" concrete as proposed by the American National Standards Institute.²⁷ The dose albedo was calculated for two response functions, namely the ambient dose equivalent and the effective dose equivalent for anteroposterior geometry.²² Twelve different incident energy distributions were considered: ten fast-neutron contiguous energy groups with group boundaries of 0.1, 0.2, 0.4, 0.6, 0.8, 1, 2, 4, 6, 8, and 10 MeV, a room-temperature thermal-neutron spectrum, a ²⁵²Cf fission neutron spectrum, and monoenergetic 14-Mev neutrons. The MCNP neutron albedo results were then used to find parameters for a new neutron albedo approximation. The new formula and parameter tabulations are presented in Chapter 3.

1.5.3 Secondary-Photon Albedo

The MCNP code was also used to obtain also a set of secondary-photon albedo data based on modern response functions. In general, the secondary-photon albedo is independent of the azimuthal angle as a consequence of the isotropic emission of secondary gamma rays. Also of note is that the magnitude of the secondary-photon albedo is usually considerably less than that of the neutron albedo. Because high accuracy for the secondary-photon albedos is generally not needed, a relatively simple approximation can be used. These MCNP data were used to obtain parameters for a secondary-photon albedo formula proposed by Maerker and Muckenthaler.⁶ The results are presented in Chapter 4.

Parameters for Photon Albedo Approximations

This appendix contains the fit parameters for the approximation of the differential photon albedo data. The first approximation of the differential photon albedo is²

$$\alpha_D(E_o, \theta_o; \theta, \psi) = \frac{C(E_o)_e \sigma_{Ce}(E_o, \theta_s) \times 10^{26} + C'(E_o)}{1 + (\cos \theta_o / \cos \theta)},$$
(2.1)

where $C(E_o)$ and $C'(E_o)$ are the fit parameters, and ${}_e\sigma_{Ce}(E_o,\theta)$ is the Klein-Nishina energy scattering cross section per electron given by¹

$${}_{e}\sigma_{Ce}(E_{o},\theta) = \frac{1}{2}r_{e}^{2}p^{2}[1+p^{2}-p(1-\cos^{2}\theta)].$$
(2.2)

Here $r_e = 2.8179 \times 10^{-13}$ cm is the classical electron radius and p is the ratio of the incident to final energy of the photon after scattering through an angle θ_s , namely

$$p = \frac{1}{1 + (E_o/m_e c^2)(1 - \cos\theta)},$$
(2.3)

and the scattering angle is determined from¹

$$\cos\theta_s = \sin\theta_o \,\sin\theta \,\cos\psi - \cos\theta_o \,\cos\theta. \tag{2.4}$$

The second approximation of the differential photon albedo is the seven-parameter approximation by Chilton and Huddleston⁵

$$\alpha_D(E_o, \theta_o; \theta, \psi) = F(E_o, \theta_o; \theta, \psi) \frac{C(E_o)_e \sigma_{Ce}(E_o, \theta) \times 10^{26} + C'(E_o)}{1 + (\cos \theta_o / \cos \theta)(1 + 2E_o \operatorname{vers} \theta)^{1/2}},$$
(2.5)

where

$$F(E_o, \theta_o; \theta, \psi) = A_1(E_o) + A_2(E_o) \operatorname{vers}^2 \theta_o + A_3(E_o) \operatorname{vers}^2 \theta$$
$$+ A_4(E_o) \operatorname{vers}^2 \theta_o \operatorname{vers}^2 \theta + A_5(E_o) \operatorname{vers} \theta_o \operatorname{vers} \theta \operatorname{vers} \psi, \qquad (2.6)$$

with the versine defined as vers $\theta = 1 - \cos \theta$.

2.1 Tables of Parameters for Photon Albedos

Tabulated below are tables of parameters need for the albedo approximations of Eqs. (2.1) and (2.5). First a summary of the 4 tables.

- Table 2.1: Parameters for the two-term Chilton-Huddleston approximation given in Eq. (2.1) for the 10-mm H^{*}(10) ambient dose equivalent albedo. Errors using this formula can exceed 50% in some cases.
- Table 2.2: Parameters for the seven-term Chilton-Huddleston approximation given in Eq. (2.5) of the photon albedo based on the 10-mm H^{*}(10) ambient dose equivalent. Errors associated with this formula are less than 10% for all cases.
- Table 2.3: Parameters for the seven-term Chilton-Huddleston approximation given in Eq. (2.5) of the exposure albedo. Errors associated with this formula are less than 10% for all cases.
- Table 2.4: Parameters for the seven-term Chilton-Huddleston approximation given in Eq. (2.5) of the photon albedo based on the effective dose in an anthropomorphic phantom of an adult irradiated in AP geometry by a plane parallel beam of photons. Errors associated with this formula are less than 10% for all cases.

Table 2.1: Parameters for the two-term Chilton-Huddleston approximation given in Eq. (2.1) for the 10-mm H^{*}(10) ambient dose equivalent albedo. Errors using this formula can exceed 50% in some cases.

Energy	Wa	ater	Con	crete	Ir	on	Le	ad
(MeV)	10^3C	$10^3 C'$	10^3C	$10^3 C'$	10^3C	$10^3 C'$	10^3C	$10^3 C'$
0.10	3.83956	156.682	15.0806	53.5702	6.01974	6.30725	-0.99254	71.4260
0.20	12.8933	95.1294	19.5317	56.3968	22.8818	4.52419	2.54139	13.6862
0.40	26.9251	49.4120	31.0515	34.8623	34.9866	10.5355	12.3140	-4.16344
0.60	36.2690	35.5403	38.5117	26.5358	44.7663	10.5212	23.0250	-6.35561
0.80	44.6428	27.7802	46.5630	20.9768	52.9704	9.63214	32.4332	-6.21926
1.00	52.7863	22.5602	54.4830	17.3114	55.7093	8.65893	41.5937	-5.71107
1.25	61.9729	18.5551	65.3668	14.2054	70.5985	7.65120	51.2948	-4.89882
2.00	86.5642	12.6338	86.5215	10.6027	91.4505	7.81777	72.0777	0.65892
4.00	137.182	8.63979	134.941	8.84981	131.920	10.5014	93.2920	7.47707
6.00	172.511	7.47389	162.904	8.47375	148.934	11.5784	107.474	8.80086
8.00	195.014	6.97739	178.589	8.36158	170.405	11.9144	125.587	9.07966
10.00	218.439	6.58747	196.888	8.15070	173.252	11.9926	139.207	9.03810

Table 2.2: Parameters for the seven-term Chilton-Huddleston approximation given in Eq. (2.5) of the photon albedo based on the 10-mm H^{*}(10) ambient dose equivalent. Errors associated with this formula are less than 10% for all cases.

Energy							
(MeV)	A_1	A_2	A_3	A_4	A_5	C	C'
				Water			
0.10	1.3617257	-0.6302461	-0.7548435	0.3487884	0.0387338	0.0269001	0.0876417
0.20	1.3799030	-0.6555209	-0.7601835	0.5500521	-0.0479052	0.0305584	0.0632628
0.40	1.5367539	-0.7327976	-0.8710402	0.7666112	-0.0962833	0.0383884	0.0354771
0.60	1.5633930	-0.7458419	-0.9105275	0.7594926	-0.0717221	0.0491238	0.0278394
0.80	1.3804448	-0.6601983	-0.8277516	0.6405534	-0.0277081	0.0676836	0.0269157
1.00	1.5482014	-0.7446776	-0.9601892	0.6874551	0.0190690	0.0722499	0.0208905
1.25	1.1359681	-0.5459062	-0.7307400	0.4956124	0.0435891	0.1192269	0.0250475
2.00	1.3424996	-0.6515288	-0.9310955	0.5441246	0.1503701	0.1538800	0.0166478
4.00	0.8703865	-0.3749605	-0.5999494	0.2264465	0.1610904	0.4219230	0.0229354
6.00	3.1464753	-1.2219207	-2.1183572	0.5183008	0.6429003	0.1588029	0.0064076
8.00	1.4265574	-0.5276517	-0.9715595	0.1799365	0.3220812	0.4445132	0.0145970
10.00	1.7739898	-0.6525564	-1.2111553	0.2015219	0.4378267	0.4105603	0.0122329
				Concrete			
0.10	1.9621245	-0.5219961	-0.7221454	0.3557011	0.0704789	0.0128434	0.0219190
0.20	1.8063321	-0.6451711	-0.7202746	0.5311947	-0.0597505	0.0206374	0.0279548
0.40	1.5832590	-0.6654776	-0.7348977	0.5599818	0.0017012	0.0367782	0.0229049
0.60	1.3728040	-0.5899639	-0.8111057	0.4376957	0.0716138	0.0577440	0.0211169
0.80	2.0684354	-0.9163331	-1.2812262	0.7139508	0.1390697	0.0473738	0.0122853
1.00	1.5654058	-0.6974180	-0.9977901	0.5560148	0.1233789	0.0735547	0.0147291
1.25	1.5428314	-0.6956128	-1.0197941	0.5438550	0.1693153	0.0899439	0.0134019
2.00	0.8340043	-0.3813632	-0.5819863	0.2871745	0.1442294	0.2485217	0.0213318
4.00	1.2842476	-0.5285484	-0.8776104	0.2775152	0.2889089	0.2755386	0.0157605
6.00	1.4202015	-0.5621180	-0.9402475	0.1970816	0.3559883	0.3419013	0.0159622
8.00	0.7881143	-0.3076275	-0.5115098	0.0757433	0.2110672	0.7549249	0.0315733
10.00	2.1564720	-0.8700210	-1.3954837	0.1934908	0.5976625	0.3208531	0.0124725
				_			
				Iron			
0.10	5.5554633	1.0639577	-1.4568830	0.1609005	-0.1983818	0.0012109	0.0009521
0.20	1.4104301	0.0910148	-0.2629187	0.1755802	-0.2233651	0.0149810	0.0085231
0.40	2.4059536	-0.6067861	-0.9447265	0.3174070	0.1156774	0.0221123	0.0036179
0.60	1.5671967	-0.5349719	-0.7369135	0.3017382	0.1592063	0.0493866	0.0059864
0.80	1.7113367	-0.6458855	-0.8750434	0.3834039	0.2289272	0.0568578	0.0057884
1.00	0.9652392	-0.3523721	-0.7668976	0.2771355	0.1624708	0.1229448	0.0081734
1.25	4.6244655	-1.9072950	-2.7211661	1.2787578	0.8456823	0.0308826	0.0020409
2.00	1.3508914	-0.5636034	-0.8019336	0.3112480	0.3192191	0.1497107	0.0095091
4.00	2.8376360	-1.1707036	-1.4387863	0.1838764	0.7448482	0.1135459	0.0085831
6.00	2.1302893	-0.9232535	-1.0319384	0.0403568	0.6170256	0.1999437	0.0146281
8.00	1.8565615	-0.8589039	-0.8929193	0.0154593	0.5511765	0.2885945	0.0194317
10.00	2.0916035	-1.0518045	-1.0000926	0.0033478	0.6694216	0.3273868	0.0189695
				т 1			
0.10	4.0504451	1 7515940	1 6017050	Lead	0.4160087	0.0004766	0.0149509
0.10	4.9584451	-1.7515349	1.6817058	-2.9896727	0.4162037	0.0004766	0.0143503
0.20	9.9692287	4.7407880	-4.5998497	-3.0359301	-0.1040782	0.0001784	0.0016468
0.40	0.4612899	9.9987717	0.4572069	-0.12/3360	-4.0829530	0.0009602	0.0002274
0.60	4.6742339	7.5875764	1.6098191	-8.1831169	-1.7704805	0.0028001	-0.0003434
0.80	1.9429183	8.0978727	0.4186038	-9.9881020	-0.0508947	0.0031624	-0.0004100
1.00	9.4371033	5.4510350	-2.1570828	-6.1615019	1.7809757	0.0042821	-0.0004617
1.25	8.4436340	2.4301546	-3.0702102	-3.0727835	2.8598337	0.0071280	-0.0005884
2.00	5.8326950	1.1221220	-2.0970085	-2.2600255	1.0428298	0.0158234	0.0005766
4.00	1.1674039	-0.0791098	-0.3655341	-0.2958221	0.2673976	0.1264428	0.0152532
6.00	1.5988227	-0.3022349	-0.4480048	-0.3851579	0.4220257	0.1256043	0.0147778
8.00	1.8285402	-0.5116981	-0.5637856	-0.4175648	0.5807211	0.1605126	0.0147047
10.00	1.5840275	-0.5389064	-0.5029678	-0.3664431	0.5317907	0.2508782	0.0184704

Table 2.3: Parameters for the seven-term Chilton-Huddleston approximation given in Eq. (2.5) of the exposure albedo. Errors associated with this formula are less than 10% for all cases.

Energy (MeV)	4.	40	4.0	4.	4 -	С	C'
(1010 V)	211	212	213	214	210	0	0
				Water			
10	1 3586096	- 6375931	- 7695049	3899661	0145883	0267671	0878304
20	1.3000000000000000000000000000000000000	- 5963237	- 6907863	5735516	- 0942599	0307274	0531638
.20	2 3751657	-1 0907757	-1 2960658	1 1615659	- 1706545	0244888	0168101
.40 60	1 3889937	- 6553338	- 8028138	6573983	- 0406173	0546596	0216886
.00 80	1.2760562	- 6087473	- 7668200	5036506	- 0016190	0728110	0107577
1.00	1.2100502	6253337	7003200 8101136	6002003	0010130	0860538	0168000
1.00	1.2320304 1.2477628	0203037	8101150	5455245	0830026	1075425	0151448
2.00	1.2477028	0040895	8088509	6008005	1006165	1483403	0100368
2.00	1.4055555	0321071	9920001	2074040	0296721	2245201	0122140
4.00	2 0204442	4003020 1 1016007	1159000	.2974949	.2360731	1640721	.0155149
8.00	3.0294442 1 7856799	-1.1910997 6480710	1 2015064	.5266490	4966715	2205812	.0051280
10.00	1.7650722	0409710	-1.2013004	1205622	.4200715	5745404	.0091444
10.00	1.2341002	4495050	0321900	.1295022	.3213030	.5745404	.0139407
				Concrete			
.10	2.2655728	5699605	8094482	.4178748	.0371352	.0109453	.0172936
.20	1.6949683	5547462	5992330	.4844729	1185760	.0212689	.0220805
.40	1.3435796	5462498	5870453	.4172515	.0014407	.0432319	.0183002
.60	2.0517762	8899382	-1.2181956	.6655313	.1380137	.0386325	.0089115
.80	1.3569489	6065834	8535765	.4874073	.1172640	.0712430	.0119902
1.00	1.2707169	5789384	8286383	.4880147	.1300007	.0900976	.0115133
1.25	1.1994619	5583798	8252732	.4837535	.1674429	.1156413	.0107967
2.00	1.1460696	5423999	8252173	.4498914	.2361316	.1824432	.0105941
4.00	8943326	- 3814032	- 6193812	2159806	2297621	3962142	.0175134
6.00	1.4752746	- 5905619	9750111	2168942	3996525	.3214980	.0123623
8.00	1.5612684	- 6205544	-1.0273554	1793928	4432905	.3752498	.0128803
10.00	1 7613302	- 7129767	-1 1343867	1604449	5231102	3833502	0124392
10.00	1.1010002	.1120101	1.1010001	.1001110	.0201102	.0000002	.0121002
				Iron			
.10	9.6973886	2.0314617	-2.3917537	.5836748	6181753	.0006778	.0004684
.20	2.6213369	.2920946	3399050	.4126295	6052557	.0075291	.0032689
.40	2.9527881	7034345	-1.1149718	.3670291	.1047058	.0175906	.0012507
.60	1.3318353	4635119	6337755	.2970995	.1438421	.0567444	.0029731
.80	1.5845419	6192812	8275853	.4219586	.2350798	.0600989	.0029408
1.00	.8560609	3238202	6907274	.2788114	.1463488	.1350705	.0038228
1.25	.8312222	3633895	5089620	.2807025	.1822710	.1696448	.0055290
2.00	1.7017341	7499151	-1.0527810	.4817455	.4545143	.1199714	.0051730
4.00	1.6201177	6886469	8402881	.1445351	.4655863	.1985248	.0124658
6.00	1.9036651	8471953	9277028	.0622700	.5760846	.2225516	.0138852
8.00	1.2577941	5925093	6052923	.0195367	.3892324	.4198386	.0242292
10.00	1.5327184	7784193	7264239	.0119841	.4994223	.4288107	.0219759
				Lead			
.10	9.9930058	.5005251	-1.3326408	-7.3052340	5158350	0000669	.0100954
.20	9.9903345	7.3380179	-5.2155704	-5.7429957	-1.1180123	.0001337	.0015722
.40	1.9058838	3.9187956	.3808926	-2.3085258	-1.7510639	.0024193	.0005094
.60	6.2633324	9.2629881	1.7181484	-9.9079370	-2.1158881	.0021201	0003520
.80	9.9996738	8.2984600	7154340	-9.2297382	.1831888	.0026014	0004021
1.00	9.2402649	4.6356792	-2.1502395	-5.0332556	1.2051446	.0043080	0005219
1.25	6.5889821	1.8161441	-2.2752404	-2.1841023	1.7685664	.0086859	0007744
2.00	2.4122825	.4030713	8395048	7556783	.4094319	.0368162	.0011127
4.00	3.9943926	3420753	-1.2751004	9044930	.9493059	.0364073	.0039813
6.00	1.6084495	3337303	4704935	3648208	.4448709	.1266170	.0130888
8.00	3.4904120	-1.0128771	-1.0804561	7369952	1.1206902	.0806690	.0068046
10.00	6.9024363	-2.4249303	-2.3016055	-1.3538153	2.3941250	.0553177	.0037492

Table 2.4: Parameters for the seven-term Chilton-Huddleston approximation given in Eq. (2.5) of the photon albedo based on the effective dose in an anthropomorphic phantom of an adult irradiated in AP geometry by a plane parallel beam of photons. Errors associated with this formula are less than 10% for all cases.

Energy		4	4	4	4	C	CI
(MeV)	A_1	A_2	A_3	A_4	A_5	С	C'
							
10	1 0000040	0001044	F1F 1000	Water	0000 100	0045000	05001.41
.10	1.3863848	6021944	7171826	.3234895	.0283466	.0247098	.0738141
.20	1.3600616	6260421	7226266	.5172511	0425301	.0302954	.0603193
.40	1.3849024	6513189	7747734	.6661277	0726547	.0424929	.0380556
.60	1.5300970	7270820	8895122	.7403737	0481369	.0493084	.0269095
.80	1.3979789	6714219	8414668	.6531471	0101099	.0663148	.0246149
1.00	1.4442450	6977744	9016196	.6694142	.0285292	.0763619	.0205698
1.25	1.4845772	7184207	9558252	.6412585	.0754812	.0905808	.0174668
2.00	1.1956178	5879138	8415561	.5077073	.1501323	.1734355	.0169447
4.00	.9209459	3972970	6342779	.2499660	.1745050	.3806726	.0193008
6.00	1.3967237	5464413	9419938	.2562198	.2925006	.3387830	.0126308
8.00	.8507669	3168369	5831127	.1279143	.1964527	.6909604	.0210747
10.00	1.6762224	6162401	-1.1415220	.2205939	.4153257	.4005162	.0112030
				~			
10				Concrete			
.10	2.4981828	6027542	8508686	.4683589	.0125804	.0095899	.0160715
.20	1.5084198	5359601	5961378	.4421856	0467282	.0246392	.0329258
.40	1.6546059	6944285	7665046	.5874381	.0028519	.0349238	.0222758
.60	1.0050956	4346069	5964057	.3328788	.0520889	.0773375	.0283235
.80	1.3362553	5930037	8281368	.4845731	.0893720	.0709798	.0185513
1.00	1.3862212	6287217	8958863	.5217936	.1213557	.0822386	.0155817
1.25	8.0727272	-3.7132201	-5.4291339	3.0893266	.9708790	.0171347	.0023793
2.00	2.7691715	-1.2898074	-1.9596257	1.0324391	.5020356	.0745726	.0059958
4.00	1.2941645	5426044	8909731	.3089871	.2989477	.2635290	.0142533
6.00	1.2051110	4815509	8052397	.1987435	.3081896	.3795641	.0169145
8.00	1.3621567	5329902	8810573	.1537520	.3576294	.3999539	.0161521
10.00	1.4897641	6030415	9671048	.1673006	.4129645	.4271814	.0159873
				Iron			
.10	9.5635328	2.1535709	-2.2148628	.6362496	8069947	.0006597	.0005589
.20	9.7141228	.6256237	-1.8069834	1.2181344	-1.5413320	.0021738	.0012355
.40	1.8425571	4616132	7213287	.2511070	.0824877	.0285766	.0051372
.60	1.5590018	5325163	7339519	.3243350	.1488504	.0483876	.0061268
.80	1.1475514	4401372	5911158	.2824186	.1505503	.0832173	.0082543
1.00	1.1932141	4389158	9525264	.3617720	.1939907	.0975341	.0060066
1.25	1.7626988	7409958	-1.0463610	.5243955	.3453242	.0801142	.0048411
2.00	1.3437814	5720249	8118090	.3431905	.3272220	.1495263	.0088745
4.00	.9758293	4047108	4987890	.0815464	.2562267	.3154349	.0229816
6.00	.9207067	4004357	4486125	.0377052	.2653546	.4330586	.0307044
8.00	1.3290263	6163175	6399071	.0349355	.3932230	.3705385	.0241035
10.00	1.5940059	8018650	7660544	.0352280	.5090408	.3919097	.0221501
				x 1			
10			1 0 0 0 0 0 0 0	Lead	0.40 F 0.04		
.10	2.9842589	-1.0779141	1.0600022	-1.7870783	.2495961	.0007582	.0227627
.20	9.9983883	4.6986628	-4.5690465	-2.9675632	1655467	.0001784	.0015685
.40	1.2305186	2.2484958	.1228866	-1.4168386	9176817	.0042555	.0009667
.60	5.1412210	8.1284828	1.5626746	-8.4425898	-1.9349260	.0025279	0003189
.80	8.3600903	8.4244442	.4146148	-9.9999723	2036621	.0029424	0003864
1.00	2.8241227	1.6017134	6255112	-1.7876376	.4142616	.0140885	0015587
1.25	.9164695	.2845178	3130300	3538649	.2804556	.0635260	0052907
2.00	1.0398011	.1929365	3709861	3683538	.1826298	.0872324	.0030265
4.00	4.1394916	3002865	-1.3017610	9541165	.9373099	.0339384	.0040030
6.00	1.6543949	3188405	4651516	3532985	.4261338	.1135961	.0130339
8.00	2.0158184	5690309	6187442	4157900	.6314095	.1327159	.0119209
10.00	4.7080259	-1.6174051	-1.5300626	9638563	1.5949455	.0778010	.0055569

Parameters for Neutron Albedo Approximations

This appendix contains the fit parameters for the approximation of the differential neutron dose albedo data. The approximation of the differential neutron dose albedo is^{28,29}

$$\alpha_D(\Delta E_o, \theta_o; \theta, \psi) = \frac{H(\kappa_1, \cos \theta_o) H(\kappa_2, \cos \theta)}{1 + K_1(E_o, \theta_o; \theta) / \cos \theta} \sum_{i=0}^N B_i P_i(\cos \theta_s),$$
(3.1)

where

$$K_1(E_o, \theta_o; \theta) = \sum_{i=0}^{2} \cos^i \theta \sum_{j=0}^{2} A_{ij} \cos \theta_o^j.$$
 (3.2)

Here $H(\kappa, \cos \theta)$ is Chandrasekhar's H-function.^{1,16} An approximation of the H-function that is within 5% for κ between 0.8 and 1.0 can be expressed as

$$H(\kappa,\mu) = \frac{A + B\kappa + C\mu + D\mu^2 + E\mu^3}{1 + F\kappa + G\kappa^2 + H\kappa^3 + I\mu}.$$
(3.3)

This approximation was obtained by fitting Eq. (3.3) to actual H-function data. Values for the constants are given in the table below.

Table 3.1: Fit parameters for	the
Chandrasekhar H Function	Ap-
proximation of Eq. (3.3)	

Parameter	Value
А	0.075272288
В	-0.063133359
С	0.021092012
D	-0.026070382
E	0.009381680
F	-3.179279300
G	3.485739800
Н	-1.294988700
Ι	-0.005750418

3.1 Parameters for the Neutron Albedo Approximation

In this section tables of coefficients for the neutron albedo approximation of Eq. (3.1) are presented. First a summary of the tables.

- Table 3.2: Parameters for the twenty-four term approximation (see Eq. (3.1)) of the neutron albedo based on the effective dose in an anthropomorphic phantom of an adult irradiated in AP geometry by a plane parallel beam of neutrons. Results obtained using fits based on the minimization of the maximum deviation. Results are for neutrons incident on concrete. Errors associated with this formula are less than 10% for all cases.
- Table 3.3: Parameters for the twenty-four term approximation (see Eq. (3.1)) of the neutron albedo based on the effective dose in an anthropomorphic phantom of an adult irradiated in AP geometry by a plane parallel beam of neutrons. Results obtained using fits based on the minimization of the maximum deviation. Results are for neutrons incident on iron. Errors associated with this formula are less than 10% for all cases.
- Table 3.4: Parameters for the twenty-four term approximation (see Eq. (3.1)) of the neutron albedo based on the effective dose in an anthropomorphic phantom of an adult irradiated in AP geometry by a plane parallel beam of neutrons. Results obtained using fits based on the minimization of the maximum deviation. Results are for neutrons incident on lead. Errors associated with this formula are less than 10% for all cases.
- Table 3.5: Parameters for the twenty-four term approximation (see Eq. (3.1)) of the neutron albedo based on the effective dose in an anthropomorphic phantom of an adult irradiated in AP geometry by a plane parallel beam of neutrons. Results obtained using fits based on the minimization of the maximum deviation. Results are for neutrons incident on water. Errors associated with this formula are less than 10% for all cases.
- Table 3.6: Parameters for the twenty-four term approximation (see Eq. (3.1)) of the neutron albedo based on the 10-mm H^{*}(10) ambient dose equivalent response function. Results obtained using fits based on the minimization of the maximum deviation. Results are for neutrons incident on concrete. Errors associated with this formula are less than 10% for all cases.
- Table 3.7: Parameters for the twenty-four term approximation (see Eq. (3.1)) of the neutron albedo based on the 10-mm H^{*}(10) ambient dose equivalent response function. Results obtained using fits based on the minimization of the maximum deviation. Results are for neutrons incident on iron. Errors associated with this formula are less than 10% for all cases.
- Table 3.8: Parameters for the twenty-four term approximation (see Eq. (3.1)) of the neutron albedo based on the 10-mm H^{*}(10) ambient dose equivalent response function. Results obtained using fits based on the minimization of the maximum deviation. Results are for neutrons incident on lead. Errors associated with this formula are less than 10% for all cases.
- Table 3.9: Parameters for the twenty-four term approximation (see Eq. (3.1)) of the neutron albedo based on the 10-mm H*(10) ambient dose equivalent response function. Results obtained using fits based on the minimization of the maximum deviation. Results are for neutrons incident on water. Errors associated with this formula are less than 10% for all cases.
- Table 3.10: Parameters for the twenty-four term approximation (see Eq. (3.1)) of the Henderson neutron albedo using fits based on the minimization of the maximum deviation. Results are for neutrons incident on concrete. Errors associated with this formula are less than 10% for all cases.

- Table 3.11: Parameters for the twenty-four term approximation (see Eq. (3.1)) of the Henderson neutron albedo using fits based on the minimization of the maximum deviation. Results are for neutrons incident on iron. Errors associated with this formula are less than 10% for all cases.
- Table 3.12: Parameters for the twenty-four term approximation (see Eq. (3.1)) of the Henderson neutron albedo using fits based on the minimization of the maximum deviation. Results are for neutrons incident on lead. Errors associated with this formula are less than 10% for all cases.
- Table 3.13: Parameters for the twenty-four term approximation (see Eq. (3.1)) of the Henderson neutron albedo using fits based on the minimization of the maximum deviation. Results are for neutrons incident on water. Errors associated with this formula are less than 10% for all cases.

Table 3.2: Parameters for the twenty-four term approximation (see Eq. (3.1)) of the neutron albedo based on the effective dose in an anthropomorphic phantom of an adult irradiated in AP geometry by a plane parallel beam of neutrons. Results obtained using fits based on the minimization of the maximum deviation. Results are for neutrons incident on concrete. Errors associated with this formula are less than 10% for all cases.

	B_0	B_1	B_2	B_3	B_4	B_5
Energy	B_6	B_7	B_8	B_9	B_{10}	B_{11}
(MeV)	B_{12}	$A_{0,0}$	$A_{0,1}$	$A_{0,2}$	$A_{1,0}$	$A_{1,1}$
. ,	$A_{1,2}$	$A_{2,0}$	$A_{2,1}$	$A_{2,2}$	κ_1	κ_2
0.10 to 0.20	0.0367411	0.0095147	0.0098863	0.0068287	0.0033599	0.0015699
	0.0005078	0.0000326	-0.0003710	-0.0001213	0.0001161	0.0000883
	0.0001667	0.0078664	0.5398713	-0.0390681	-0.4691313	0.2199137
	-0.1037968	0.2135760	-0.0122488	-0.1106445	0.8042246	0.9686999
0.20 to 0.40	0.0423712	0.0048673	0.0099964	0.0060542	0.0025969	0.0010120
	0.0006853	0.0007404	0.0005028	-0.0001375	-0.0002423	-0.0000827
	-0.0001289	0.0070957	0.6771135	-0.0543744	-0.3644181	0.0258445
	0.1709625	0.2082043	0.1220717	-0.1023880	0.8229709	0.9727805
0.40 to 0.60	0.0301675	0.0174822	0.0116144	0.0031094	0.0007767	-0.0003406
	-0.0007397	-0.0006530	-0.0004997	-0.0002412	0.0000798	0.0002437
	0.0000221	0.0723953	0.0978213	0.3056866	-0.4293650	-0.0957578
	0.0622070	0.0557796	0.0004394	0.0638993	0.8260067	0.9954453
0.60 to 0.80	0.0422765	0.0195191	0.0099498	0.0060598	0.0028570	0.0016891
	0.0015499	0.0011932	0.0010160	0.0004533	-0.0000350	-0.0008832
	-0.0006331	0.0132923	0.5938434	0.1517493	-0.3174781	0.2454523
	-0.0276932	0.1633691	-0.0901760	-0.2740309	0.8397344	0.9833418
0.80 to 1.00	0.0439186	0.0157430	0.0184362	0.0069378	0.0018952	0.0009476
	-0.0007442	-0.0008260	-0.0004056	-0.0000474	0.0001689	0.0006529
	0.0002836	0.0155157	0.5147689	0.0679360	-0.4384998	0.1593277
	0.1779590	0.3910571	0.0292820	-0.2770177	0.8569101	0.9878104
1.00 to 2.00	0.0533463	0.0267611	0.0334315	0.0096621	0.0048124	0.0008056
	0.0001973	-0.0002943	0.0002056	0.0006993	-0.0005434	-0.0002270
	-0.0004002	-0.0045435	0.9471912	0.0639146	-0.1607181	-0.1815755
	0.1902393	0.1446654	0.1262610	0.4118374	0.9581988	0.9819548
2.00 to 4.00	0.0498237	0.0367688	0.0413227	0.0235396	0.0104825	0.0048196
	0.0018945	0.0004750	0.0000143	0.0000185	-0.0005481	0.0000830
	0.0005681	0.0121344	0.6451692	0.0286664	-0.3308923	-0.0535236
	-0.1325837	0.1665506	0.0376102	0.1100787	0.8094487	0.9718247
4.00 to 6.00	0.0251075	0.0227871	0.0262192	0.0202818	0.0159983	0.0090771
	0.0031501	0.0009347	0.0002043	0.0000857	-0.0000489	0.0001488
	0.0002113	0.0035785	0.4015275	0.0852345	-0.6205468	-0.0135770
	-0.1339852	0.1440857	-0.0719888	0.2645901	0.9034963	0.9926794
6.00 to 8.00	0.0292120	0.0233335	0.0263324	0.0295953	0.0250988	0.0103972
	0.0047369	0.0028073	0.0009665	-0.0001360	-0.0002737	-0.0000945
	-0.0000358	0.0071872	0.5654923	0.0553671	-0.5400554	0.0204622
	0.0841230	0.2979534	-0.0892442	0.0892126	0.8586813	0.9919124
8.00 to 10.0	0.0212160	0.0185849	0.0213830	0.0221647	0.0224562	0.0135541
	0.0075167	0.0040474	0.0007333	-0.0000490	0.0000175	0.0001051
	0.0000355	0.0070916	0.4145974	0.0884066	-0.6457723	0.2549709
	-0.2272040	0.1963066	-0.1284152	0.1762416	0.8439180	0.9848954
thermal	0.0541979	0.0166098	0.0050314	0.0034625	-0.0007054	0.0035282
	-0.0030853	-0.0006300	0.0027495	-0.0002296	0.0005209	0.0000336
	0.0007691	0.0428117	0.5385181	-0.0549625	-0.3687924	-0.1682842
	-0.1106394	0.0708553	-0.0723496	-0.0236882	0.8380482	0.9980718
^{252}Cf	0.0260239	0.0005683	0.0001505	0.0000325	0.0000595	0.0000007
	-0.0000275	0.0000160	-0.0000251	0.0000358	-0.0000162	-0.0000189
	-0.0000354	0.0099893	0.3897155	0.0166041	-0.6168315	0.2982679
	-0.0716184	0.2137052	-0.0661892	0.0484276	0.8569646	0.9923663
14.00	0.0475980	0.0001559	0.0000214	-0.0000664	0.0000548	0.0001023
	0.0000377	0.0000101	-0.0000689	0.0000009	-0.0000311	-0.0000879
	0.0000488	0.0223569	0.4989641	-0.0916818	-0.4625625	0.0667646
	-0.1676700	0.1071829	-0.2856540	0.2362564	0.8321187	0.9933552

Table 3.3: Parameters for the twenty-four term approximation (see Eq. (3.1)) of the neutron albedo based on the effective dose in an anthropomorphic phantom of an adult irradiated in AP geometry by a plane parallel beam of neutrons. Results obtained using fits based on the minimization of the maximum deviation. Results are for neutrons incident on iron. Errors associated with this formula are less than 10% for all cases.

	B_0	B_1	B_2	B_3	B_4	B_5
Energy	B_6	B_7	B_8	B_9	B_{10}	B_{11}
(MeV)	B_{12}	$A_{0,0}$	$A_{0,1}$	$A_{0,2}$	$A_{1,0}$	$A_{1,1}$
· · /	$A_{1,2}$	$A_{2,0}$	$A_{2,1}$	$A_{2,2}$	-, ο <i>Κ</i> 1	-,- К2
0.10 to 0.20	0.0537821	0.0017865	0.0048639	0.0019115	0.0045255	0.0022977
	0.0008683	0.0007441	-0.0003086	0.0005963	0.0003165	0.0004502
	-0.0001300	0.0246777	0.4516944	-0.1270954	-0.4073347	0.6629261
	-0.1184661	0.2479347	0.2815844	-0.4326308	0.8783978	0.9962834
0.20 to 0.40	0.0646326	0.0086021	0.0132017	0.0065028	0.0067316	0.0032212
	0.0016765	0.0014901	0.0004514	0.0001144	-0.0004737	-0.0000104
	-0.0001504	0.0261775	0.5288151	-0.1457721	-0.3122937	0.4753786
	-0.1927494	0.1997239	0.1204702	-0.2217064	0.8109303	0.9880702
0.40 to 0.60	0.0519503	0.0181781	0.0169503	0.0069729	0.0035924	0.0013276
	0.0001314	0.0003312	-0.0004083	-0.0000968	-0.0000028	-0.0000309
	-0.0000520	0.0185948	0.5117475	-0.1082423	-0.3703021	-0.1198960
	-0.0412526	0.0624298	0.1680743	-0.1067455	0.8202116	0.9929994
0.60 to 0.80	0.0671056	0.0116861	0.0228331	0.0065160	0.0029340	0.0012356
	0.0001430	0.0006002	0.0000731	-0.0000025	0.0002633	0.0007497
	0.0006324	0.0281989	0.5423254	-0.1012086	-0.3026381	-0.0819616
	0.0985734	0.1013371	0.0700159	-0.0629955	0.8070648	0.9712664
0.80 to 1.00	0.0477539	0.0234296	0.0254983	0.0082814	0.0020334	0.0016052
	-0.0001570	0.0002696	0.0004464	-0.0002971	-0.0008310	-0.0004763
	-0.0001930	0.0175086	0.4768933	-0.0276307	-0.3423541	-0.0929206
	-0.2813837	-0.0222240	-0.0459232	0.2462069	0.8027924	0.9838462
1.00 to 2.00	0.0454807	0.0212590	0.0334307	0.0165116	0.0075924	0.0030433
	0.0007491	-0.0000965	0.0000731	0.0000925	-0.0003900	-0.0000256
	0.0001407	0.0120872	0.5846308	-0.0058031	-0.3334153	-0.0616537
	-0.3028130	0.1389874	0.1771141	0.3161951	0.8816439	0.9931341
2.00 to 4.00	0.0327095	0.0254366	0.0319754	0.0260907	0.0152440	0.0066091
	0.0022882	0.0006752	-0.0002023	0.0000058	-0.0000931	0.0007700
	0.0006977	0.0139605	0.4144933	-0.0232998	-0.6407421	0.0199073
	-0.1582915	0.2203960	-0.0729636	0.0590572	0.8353041	0.9854888
4.00 to 6.00	0.0226112	0.0257601	0.0316231	0.0301265	0.0219307	0.0126175
	0.0061525	0.0022151	0.0000665	-0.0001539	0.0003178	0.0008788
	0.0005891	0.0097755	0.3234787	-0.0079898	-0.7419680	0.0594374
	-0.1737801	0.2090602	-0.0681803	0.0111492	0.8542458	0.9901631
6.00 to 8.00	0.0227009	0.0297507	0.0379779	0.0374272	0.0306618	0.0212428
	0.0121110	0.0055371	0.0012818	-0.0002037	-0.0000407	0.0003557
	0.0001230	0.0043574	0.3518001	0.0205323	-0.7128190	-0.0149595
	-0.3543422	0.1688007	-0.2043120	0.3950885	0.9048503	0.9777347
8.00 to 10.0	0.0199811	0.0273196	0.0361898	0.0366831	0.0316147	0.0237606
	0.0150417	0.0080399	0.0026525	-0.0004237	-0.0013073	-0.0008760
	-0.0002083	-0.0003687	0.3698973	0.0355455	-0.6979910	-0.2120935
	-0.2670472	0.1474438	0.1195770	0.2713023	0.9298326	0.9891897
thermal	0.0455345	0.0209943	0.0075921	0.0071329	0.0010822	0.0064727
	-0.0024455	0.0009041	0.0049813	0.0000356	0.0008753	0.0007820
	0.0013578	0.0631202	0.2682746	0.1151971	-0.4866621	-0.4639305
075	-0.0184464	-0.0042064	0.2267971	-0.2133825	0.8127556	0.9980614
^{252}Cf	0.0389978	0.0263448	0.0290572	0.0168805	0.0096723	0.0046578
	0.0009539	0.0002328	0.0000944	0.0000769	-0.0000970	-0.0000250
	0.0003616	0.0134221	0.5355485	0.1628747	-0.4884334	0.4284689
	-0.2794972	0.2571351	-0.1648760	0.1638437	0.9150549	0.9896433
14.00	0.0364402	0.0260088	0.0341557	0.0260806	0.0169008	0.0088392
	0.0033895	0.0010451	-0.0003129	0.0000059	0.0006453	0.0008801
	0.0003116	0.0109115	0.4608825	-0.0776147	-0.5653223	-0.0176936
	-0.2105574	0.1524764	-0.0594760	0.1886905	0.8109074	0.9800463

Table 3.4: Parameters for the twenty-four term approximation (see Eq. (3.1)) of the neutron albedo based on the effective dose in an anthropomorphic phantom of an adult irradiated in AP geometry by a plane parallel beam of neutrons. Results obtained using fits based on the minimization of the maximum deviation. Results are for neutrons incident on lead. Errors associated with this formula are less than 10% for all cases.

	B_0	B_1	B_{2}	B_3	B_A	B_5
Energy	B_6	B_7	B_8	B_{0}	B_{10}	B_{11}
(MeV)	B_{12}	Ann	A0.1	$A_{0,2}$	A1 0	A1 1
	A1 2	A2.0	A2 1	A2.2	Г,0 К1	1,1 Ко
0.10 to 0.20	0.0677467	0.0029166	0.0028654	0.0006444	0.0002013	0.0002646
0110 00 0120	-0.0001208	-0.0001893	-0.0000454	-0.0000256	-0.0002718	-0.0001276
	-0.0001923	0.0324402	0.6654338	-0.1196975	-0.2767489	0.0874708
	-0.3424166	0.0967209	-0.3483327	0.3317851	0.8186390	0.9882170
0.20 to 0.40	0.0509949	0.0042217	0.0045283	0.0022160	0.0015266	0.0007451
0.20 00 0.10	0.0001785	-0.0001293	0.0000895	0.0000503	-0.0000990	-0.0001369
	-0.0003443	0.0208603	0.5465633	-0 1127793	-0.4311510	-0.0487716
	-0.0950128	0.1135161	-0 1365076	0.0950868	0.8332118	0.9981327
0.40 to 0.60	0.0394910	0.0051552	0.0064842	0.0044458	0.0039781	0.0016003
0.10 10 0.00	0.0007464	0.0003899	-0.0002676	-0.0001110	-0.0001675	-0.0000072
	-0.0000165	0.0105956	0.4501454	-0.0996759	-0 5432568	-0.2090092
	0.0862122	0.0378256	0 1390623	-0 1221233	0.8715573	0.9933928
0.60 to 0.80	0.0516072	0.0092382	0.0123737	0.0099427	0.0092348	0.0027247
0100 00 0100	0.0010066	0.0007107	-0.0004331	-0.0000668	-0.0000355	-0.0000718
	-0.0002900	0.0143655	0.5728504	-0.1197054	-0.4154174	-0.0906619
	-0.2523979	0.0375876	-0.0804342	0.2307915	0.8398252	0.9896933
0.80 to 1.00	0.0657677	0.0148777	0.0199606	0.0180671	0.0166785	0.0029471
	0.0008763	0.0015219	-0.0004437	-0.0004374	-0.0007466	-0.0012450
	-0.0013712	0.0237950	0.7190957	-0.1553704	-0.3253249	0.0368113
	-0.1707990	0.2374419	-0.4620693	0.3119529	0.8115308	0.9927097
1.00 to 2.00	0.0478430	0.0184059	0.0259299	0.0244250	0.0231723	0.0043265
	0.0013445	0.0007378	-0.0003235	0.0004907	-0.0002792	-0.0003940
	-0.0009995	0.0088690	0.6171857	0.0387841	-0.4297126	-0.0168555
	-0.2563269	0.0649453	0.0156443	0.3041158	0.9708289	0.9890600
2.00 to 4.00	0.0333611	0.0251450	0.0357086	0.0361308	0.0346531	0.0166109
	0.0067283	0.0040108	0.0012985	0.0009239	-0.0011857	-0.0014679
	0.0005794	0.0140424	0.3925111	-0.0201460	-0.6745017	-0.1112765
	-0.2466413	0.1976331	-0.3279410	0.5469502	0.8468726	0.9906030
4.00 to 6.00	0.0251318	0.0281323	0.0386186	0.0404370	0.0383241	0.0281203
	0.0168587	0.0094340	0.0043895	0.0007474	-0.0019954	-0.0017360
	-0.0006213	0.0027139	0.4103362	-0.0718211	-0.6688181	-0.4078784
	0.2706494	0.1436354	0.0520120	-0.1132072	0.8713473	0.9937512
6.00 to 8.00	0.0226236	0.0262556	0.0350323	0.0397495	0.0401387	0.0347594
	0.0264722	0.0192900	0.0140586	0.0090921	0.0041435	0.0007612
	-0.0003099	0.0048185	0.4029131	0.0901090	-0.7255821	0.1181850
	-0.5733396	0.1331429	-0.1688053	0.4979571	0.9750893	0.9800329
8.00 to 10.0	0.0182748	0.0185571	0.0228777	0.0265616	0.0288484	0.0279664
	0.0246477	0.0213461	0.0191343	0.0160565	0.0106771	0.0047065
	0.0012370	0.0009918	0.3552024	-0.0678306	-0.7116458	-0.3357922
	0.2033430	0.0486001	0.1281460	-0.1310724	0.8743236	0.9835383
thermal	0.0542597	0.0343076	0.0468660	0.0487256	0.0457851	0.0223083
	0.0119716	0.0094114	0.0040727	0.0013554	-0.0010629	-0.0006866
	-0.0000562	0.0179187	0.6407926	-0.0322560	-0.4328993	-0.0509097
252 cm	-0.3227891	0.1327692	0.0116666	0.1039553	0.8890687	0.9764090
202 Cf	0.0122805	0.0173355	0.0178382	0.0107358	0.0038932	0.0002838
	-0.0005534	-0.0000984	0.0002139	0.0000579	-0.0000861	-0.0000864
	-0.0000490	0.0076861	0.2791961	0.2276189	-0.7840079	-0.0706620
14.00	0.2633359	0.1987001	0.2086285	-0.2438915	0.9232587	0.9858822
14.00	0.0148943	0.0195667	0.0209860	0.0210988	0.0212938	0.0180991
	0.0124948	0.0075876	0.0036572	0.0009625	-0.0002911	-0.0002781
	-0.0000095	-0.0073550	0.3894447	0.0019808	-0.0584768	-0.2207042
1	0.2670048	0.1292766	-0.0060571	0.0400297	0.9073250	0.9956466

Table 3.5: Parameters for the twenty-four term approximation (see Eq. (3.1)) of the neutron albedo based on the effective dose in an anthropomorphic phantom of an adult irradiated in AP geometry by a plane parallel beam of neutrons. Results obtained using fits based on the minimization of the maximum deviation. Results are for neutrons incident on water. Errors associated with this formula are less than 10% for all cases.

	B_0	B_1	B_2	B_3	B_4	B_5
Energy	$\tilde{B_6}$	B_7	$\bar{B_8}$	B_9	B_{10}	B_{11}
(MeV)	B_{12}	$A_{0,0}$	$A_{0,1}$	$A_{0,2}$	$A_{1.0}$	$A_{1,1}$
· · ·	$A_{1,2}$	$A_{2,0}$	$A_{2,1}$	$A_{2,2}$	κ_1	κ_2
0.10 to 0.20	0.0140217	0.0210308	0.0203049	0.0129939	0.0054270	0.0012861
-	-0.0000420	-0.0002568	-0.0001722	-0.0000440	0.0000556	0.0001320
	0.0000137	0.0037406	0.3870064	0.0981382	-0.5965275	-0.0254380
	-0.0127456	0.0478066	0.0618591	-0.3895951	0.8988318	0.9906620
0.20 to 0.40	0.0134898	0.0173956	0.0191079	0.0127709	0.0051132	0.0007874
	-0.0007689	-0.0008280	-0.0004875	-0.0000733	0.0000521	-0.0000608
	-0.0001386	0.0045700	0.3888151	0.1185423	-0.7000399	0.0926397
	-0.0485032	0.2154571	-0.0192203	-0.0945270	0.8756760	0.9869744
0.40 to 0.60	0.0164717	0.0238032	0.0214430	0.0117294	0.0038561	-0.0002437
	-0.0011927	-0.0004020	0.0000516	0.0002922	0.0002316	0.0000064
	-0.0000174	0.0124547	0.3098409	0.1956857	-0.6703959	0.3417681
	-0.0714287	0.2671956	-0.1051892	-0.2588811	0.8436614	0.9934045
0.60 to 0.80	0.0132009	0.0195881	0.0177373	0.0116792	0.0050276	0.0012936
	0.0002271	0.0002465	0.0002821	0.0000344	-0.0000439	-0.0000785
	-0.0000476	0.0007386	0.4434287	0.0683721	-0.7024223	-0.0313071
	0.3899745	0.2435625	0.0688328	-0.5414930	0.8435583	0.9943124
0.80 to 1.00	0.0216609	0.0263068	0.0304176	0.0196587	0.0088754	0.0033745
	0.0011529	0.0006758	0.0003877	-0.0000859	-0.0006841	-0.0004251
	-0.0001719	0.0065086	0.5062914	0.1964177	-0.5879559	-0.0522828
	0.3271952	0.3947879	0.1786489	-0.1789423	0.8607968	0.9850272
1.00 to 2.00	0.0217495	0.0284605	0.0317238	0.0172929	0.0061944	0.0004216
	-0.0010547	-0.0004129	0.0002865	0.0002717	-0.0002355	-0.0002571
	-0.0001544	0.0089465	0.5436668	0.3012749	-0.5735193	-0.0560894
	0.1372347	0.3699366	0.0488332	0.1769513	0.8691483	0.9868579
2.00 to 4.00	0.0159169	0.0228204	0.0231955	0.0136996	0.0036148	-0.0006411
	-0.0011638	-0.0006053	0.0001831	-0.0000408	-0.0000853	-0.0001168
	0.0000253	0.0119490	0.3025212	0.2794493	-0.6986461	-0.1163927
	0.3385000	0.2464788	0.2481518	-0.3096018	0.8644785	0.9871654
4.00 to 6.00	0.0159158	0.0243568	0.0240491	0.0154673	0.0071818	0.0019279
	-0.0006969	-0.0002755	0.0004158	0.0004624	0.0003954	0.0000005
	-0.0001163	0.0103341	0.3290232	0.2289684	-0.7605241	0.1157997
	-0.1657571	0.2119278	0.0317259	0.0279318	0.8163918	0.9789408
6.00 to 8.00	0.0213089	0.0303393	0.0280174	0.0218784	0.0108932	-0.0000962
	-0.0006866	0.0009951	0.0006537	0.0000782	-0.0003111	-0.0003532
	-0.0002748	0.0055355	0.6642621	0.1762249	-0.7193705	-0.2438961
	0.3024187	0.3968717	0.0847528	0.1167394	0.8723617	0.9784744
8.00 to 10.0	0.0207200	0.0295466	0.0271369	0.0185961	0.0116319	0.0027714
	0.0006004	0.0010802	0.0007772	-0.0001481	-0.0001615	0.0001167
	0.0000126	0.0090728	0.5217060	0.3010734	-0.6443397	-0.1649002
	0.3414246	0.3257154	0.1084897	-0.0521816	0.8659632	0.9839590
thermal	0.0158090	0.0192832	0.0260081	0.0284902	0.0285373	0.0251435
	0.0202136	0.0156487	0.0117256	0.0079078	0.0038690	0.0009524
	-0.0000244	-0.0004401	0.3613049	-0.0325900	-0.7815551	-0.2065461
	0.0626290	0.1661396	-0.1029478	0.2348050	0.9338806	0.9800295
^{252}Cf	0.0329715	0.0328177	0.0394386	0.0409707	0.0425533	0.0438342
	0.0443367	0.0463062	0.0462842	0.0462856	0.0413102	0.0304277
	0.0147546	0.0180793	0.4614206	0.0780337	-0.6918237	0.2724568
	-0.3148288	0.2808234	-0.4250634	0.1721823	0.9418839	0.9940166
14.00	0.0089378	0.0154208	0.0147456	0.0112004	0.0083345	0.0058730
	0.0034077	0.0016681	0.0005478	-0.0000019	-0.0000413	-0.0000423
	0.0000127	0.0015843	0.2020784	0.1269988	-0.8006654	-0.2181540
	0.3497484	0.0781643	0.1499137	-0.3133326	0.8636761	0.9860505

Table 3.6: Parameters for the twenty-four term approximation (see Eq. (3.1)) of the neutron albedo based on the 10-mm H^{*}(10) ambient dose equivalent response function. Results obtained using fits based on the minimization of the maximum deviation. Results are for neutrons incident on concrete. Errors associated with this formula are less than 10% for all cases.

	B_0	B_1	B_2	B_3	B_4	B_5
Energy	B_6	B_7	B_8	B_9	B_{10}	B_{11}
(MeV)	B_{12}	$A_{0,0}$	$A_{0,1}$	$A_{0,2}$	$A_{1,0}$	$A_{1,1}$
	$A_{1,2}$	$A_{2,0}$	$A_{2,1}$	$A_{2,2}$	κ_1	κ_2
0.10 to 0.20	0.0310058	0.0079036	0.0087912	0.0062737	0.0029994	0.0009364
	0.0000529	-0.0001221	-0.0001975	-0.0000960	0.0000477	0.0000535
	0.0000954	0.0039811	0.5068846	0.0105815	-0.5428182	0.1168724
	0.3424365	0.2091158	0.3370075	-0.5585166	0.9159864	0.9704829
0.20 to 0.40	0.0305840	0.0033702	0.0070808	0.0043717	0.0015211	0.0004325
	0.0003188	0.0003548	0.0002247	0.0000251	-0.0003007	-0.0000684
	-0.0000817	0.0068881	0.4763392	0.0387856	-0.5787132	0.2292421
	0.0207392	0.1804531	0.1076931	-0.0612162	0.9114627	0.9772167
0.40 to 0.60	0.0378538	0.0212337	0.0141692	0.0037221	0.0003630	-0.0004349
	-0.0010647	-0.0005923	-0.0010205	-0.0002173	-0.0000607	0.0005663
	-0.0000469	0.0906067	0.1070549	0.4564914	-0.3424352	0.0523915
	0.0252979	0.0853344	0.0096570	0.1060794	0.9174654	0.9953164
0.60 to 0.80	0.0336213	0.0151799	0.0081274	0.0040338	0.0011740	0.0006816
	0.0007243	0.0006396	0.0006094	0.0001064	-0.0000868	-0.0002743
	-0.0001044	0.0025973	0.5611226	0.0411399	-0.4697157	0.1524706
	0.0026744	0.1334834	-0.0968205	-0.0893064	0.8871664	0.9898409
0.80 to 1.00	0.0521323	0.0181552	0.0222947	0.0075743	0.0020112	0.0013746
	0.0001755	0.0001753	-0.0007409	-0.0006731	-0.0006460	0.0006971
	0.0003944	0.0081107	0.6205748	0.0188183	-0.3031898	0.0370416
	-0.1091755	0.2708193	0.0324836	0.1329039	0.8479228	0.9822085
1.00 to 2.00	0.0426823	0.0191216	0.0264995	0.0075764	0.0030333	0.0018739
	0.0007958	0.0013026	0.0008426	-0.0001858	-0.0003491	-0.0000478
	-0.0001557	0.0155465	0.5072831	0.1025068	-0.4244413	-0.0676436
	-0.0769485	0.0919803	0.0789341	0.1405899	0.8410215	0.9827538
2.00 to 4.00	0.0536824	0.0368921	0.0403338	0.0217656	0.0090350	0.0046990
	0.0021446	0.0005244	0.0001379	0.0001479	-0.0004783	0.0003796
	0.0005167	0.0105851	0.6537740	0.0051540	-0.2736292	-0.1618472
1.00 . 0.00	0.1189543	0.1314398	-0.0932544	0.0772621	0.8234569	0.9856915
4.00 to 6.00	0.0424133	0.0346687	0.0396506	0.0293448	0.0235230	0.0136585
	0.0051490	0.0020811	0.0003325	-0.0001421	-0.0004255	0.0003504
	0.0005509	0.0045969	0.5821891	0.0456769	-0.4186330	-0.1650871
6.00 + 0.00	-0.268/116	0.1078766	-0.2627333	0.6521974	0.8620418	0.9878383
6.00 to 8.00	0.0270956	0.0194425	0.0210710	0.0232430	0.0194952	0.0078456
	0.0034819	0.0018932	0.0004575 0.4570225	-0.0000806	0.0000372	0.0000062
	0.0000925	0.0002071	0.4370323	0.0920652	-0.0049087	0.0040074
8 00 to 10 0	-0.0929804	0.1347304	-0.1318118	0.2353074	0.9102310	0.9697200
8.00 10 10.0	0.0160603	0.0145099 0.0026072	0.0104001	0.010000101	0.0107859	0.0100333
	0.0004780	0.0030072	0.0008010	0.0000491	0.00000019	0.0001339
	0.0000800 0.0711332	0.0037420	0.36040470	0.0001404	0.0700020	0.0001304
252 or	-0.0111352	0.1220400	-0.2034043	0.2022354	0.0003021	0.9094541
Ct	0.0492288	0.0288697	0.0315514	0.0161952	0.0082183	0.0045599
	0.0011045	0.0000180	0.0002632	-0.0000838	-0.0001202	0.0000480
	0.0001129	0.0188406	0.5013750	0.0031271	-0.4040545	0.1344005
14.00	-0.1193347	0.1884397	-0.1341707	0.03/5134	0.8000004	0.9837270
14.00	0.0457945	0.0257283	0.0337529	0.0240880	0.0149561	0.00/3844
	0.0028909	0.0013720	0.0001499	0.0000352	0.0000009	0.0001317
	-0.0002029	0.0142210	0.4769449	-0.0732040	-0.4013939	0.0090373
	-0.4082376	0.0908468	0.0318662	0.2474061	0.8211740	0.9870799

Table 3.7: Parameters for the twenty-four term approximation (see Eq. (3.1)) of the neutron albedo based on the 10-mm H^{*}(10) ambient dose equivalent response function. Results obtained using fits based on the minimization of the maximum deviation. Results are for neutrons incident on iron. Errors associated with this formula are less than 10% for all cases.

	B_0	B_1	B_2	B_3	B_4	B_5
Energy	B_6	B_7	B_8	B_9	B_{10}	B_{11}
(MeV)	B_{12}	$A_{0,0}$	$A_{0,1}$	$A_{0,2}$	$A_{1,0}$	$A_{1,1}$
	$A_{1,2}$	$A_{2,0}$	$A_{2,1}$	$A_{2,2}$	κ_1	κ_2
0.10 to 0.20	0.0532938	0.0017214	0.0047599	0.0017235	0.0038739	0.0017985
	0.0008183	0.0009651	-0.0004182	0.0002260	-0.0000209	0.0002403
	-0.0001396	0.0207696	0.4421412	-0.1439761	-0.3949910	0.3493605
	0.0826687	0.1690127	0.4046224	-0.5592011	0.8364217	0.9889952
0.20 to 0.40	0.0428664	0.0057989	0.0089092	0.0043192	0.0046892	0.0021049
	0.0014485	0.0011974	0.0003991	0.0002262	-0.0003519	0.0001614
	0.0000392	0.0166858	0.3420655	-0.1078319	-0.5640892	0.3592397
	-0.2137942	0.1167663	-0.0682997	0.0249608	0.8001289	0.9832264
0.40 to 0.60	0.0498565	0.0169553	0.0158442	0.0065786	0.0035137	0.0013000
	0.0002785	0.0004662	-0.0002562	-0.0000707	0.0000887	0.0002501
	0.0000234	0.0157846	0.5071555	-0.0740615	-0.4392525	0.0066950
	-0.0667203	0.0433824	0.1832674	-0.1338951	0.9221095	0.9879640
0.60 to 0.80	0.0541371	0.0089104	0.0180305	0.0055529	0.0026773	0.0006289
	-0.0005249	-0.0002200	0.0002923	0.0001070	0.0003477	0.0002955
	-0.0000638	0.0249460	0.4319382	-0.0812262	-0.4565376	0.0797066
	-0.0802077	0.1451714	-0.1225046	0.1561723	0.8074403	0.9860243
0.80 to 1.00	0.0273588	0.0133481	0.0144728	0.0051136	0.0017275	0.0010622
	0.0001053	0.0001647	0.0003204	-0.0002975	-0.0007973	-0.0003560
	-0.0004633	0.0095447	0.2918528	-0.0192545	-0.6169142	-0.0820497
	-0.1109212	-0.0183574	0.0455991	0.0641485	0.8594692	0.9881279
1.00 to 2.00	0.0396122	0.0160942	0.0254778	0.0120196	0.0052634	0.0017163
	-0.0000163	-0.0007315	-0.0000126	0.0000443	-0.0000793	0.0001041
	0.0000018	0.0139711	0.4298761	-0.0270629	-0.4854542	0.1253156
	-0.4907624	0.1101582	-0.2390671	0.6185012	0.8405386	0.9948031
2.00 to 4.00	0.0699672	0.0470624	0.0583992	0.0477498	0.0277122	0.0129019
	0.0051368	0.0028880	0.0008639	-0.0002046	-0.0002689	0.0006237
	0.0006355	0.0241450	0.7713394	-0.1091949	-0.3214795	-0.3194750
	0.0104924	0.2157251	0.2203833	-0.2757922	0.8841745	0.9716388
4.00 to 6.00	0.0383584	0.0333513	0.0406763	0.0382366	0.0271660	0.0151085
	0.0071172	0.0021780	-0.0002839	-0.0000926	0.0003122	0.0007226
	0.0005182	0.0076436	0.4048834	-0.0392213	-0.5529857	-0.0688028
	-0.3777743	0.0800085	-0.0077119	0.2373894	0.8427911	0.9886515
6.00 to 8.00	0.0366453	0.0363076	0.0463791	0.0448332	0.0363180	0.0242095
	0.0132009	0.0056037	0.0007640	-0.0009652	-0.0001809	0.0008290
	0.0003877	0.0079033	0.4434946	-0.0716627	-0.5959346	-0.1655178
0.00 . 10.0	-0.1807104	0.1021265	0.0179065	0.0781227	0.8637481	0.9811557
8.00 to 10.0	0.0235136	0.0251327	0.0334662	0.0336685	0.0291116	0.0219503
	0.0140041	0.0075519	0.0028613	0.0002568	-0.0001438	0.0000136
	0.0005766	0.0074658	0.3461263	-0.0148531	-0.7061847	-0.0741588
050	-0.3756055	0.0988650	0.0051997	0.2985481	0.8/5/3/4	0.9869155
²⁵² Cf	0.0459410	0.0242135	0.0329226	0.0331010	0.0318835	0.0149376
	0.0076217	0.0061894	0.0037884	0.0009262	-0.0008405	-0.0001239
	-0.0006190	0.0155636	0.4976990	-0.1072952	-0.5499798	-0.0629111
	-0.2609887	0.1593948	-0.3307752	0.3993058	0.8123170	0.9947029
14.00	0.0128098	0.0174085	0.0166469	0.0083089	0.0014990	-0.0007495
	-0.0004953	0.0004738	0.0004850	-0.0001278	-0.0003312	-0.0002862
	0.0000611	0.0138527	0.1844362	0.2328879	-0.8331926	0.1608196
	-0.0257022	0.1951785	-0.1405954	0.0531641	0.8620238	0.9869965

Table 3.8: Parameters for the twenty-four term approximation (see Eq. (3.1)) of the neutron albedo based on the 10-mm H^{*}(10) ambient dose equivalent response function. Results obtained using fits based on the minimization of the maximum deviation. Results are for neutrons incident on lead. Errors associated with this formula are less than 10% for all cases.

	B_0	B_1	B_2	B_3	B_4	B_5
Energy	B_6	B_7	B_8	B_9	B_{10}	B_{11}
(MeV)	B_{12}	$A_{0,0}$	$A_{0,1}$	$A_{0,2}$	$A_{1,0}$	$A_{1,1}$
	$A_{1,2}$	$A_{2,0}$	$A_{2,1}$	$A_{2,2}$	κ_1	κ_2
0.10 to 0.20	0.0558987	0.0023528	0.0024396	0.0006283	0.0002252	0.0005829
	-0.0000269	-0.0000076	0.0000198	-0.0000241	-0.0000023	0.0000176
	0.0000056	0.0211978	0.5874357	-0.1463577	-0.3633696	-0.2294366
	0.0281927	0.0666451	-0.0789938	0.0592571	0.8116018	0.9912418
0.20 to 0.40	0.0500629	0.0042147	0.0045578	0.0019449	0.0015217	0.0009231
	0.0002355	-0.0000006	0.0000737	-0.0000236	-0.0000842	0.0000151
	-0.0001222	0.0171735	0.5094106	-0.1322565	-0.4581400	-0.1971223
	-0.0238649	0.0226677	-0.0800756	0.0924186	0.8022838	0.9830990
0.40 to 0.60	0.0572949	0.0072558	0.0093308	0.0064029	0.0060143	0.0020942
	0.0005229	0.0002147	-0.0003718	-0.0001010	-0.0002718	-0.0000931
	-0.0000863	0.0151566	0.6345752	-0.1400677	-0.3631013	-0.1609658
	-0.0181668	0.0556704	-0.0204593	0.0473351	0.8779085	0.9912042
0.60 to 0.80	0.0374910	0.0064014	0.0086570	0.0073005	0.0066616	0.0015417
	0.0004225	0.0004135	-0.0004770	-0.0000946	0.0000506	-0.0002702
	-0.0005456	0.0106124	0.4169844	-0.0916683	-0.5844201	-0.1010548
	-0.1155415	0.0328702	-0.0593905	0.1271705	0.8536718	0.9887343
0.80 to 1.00	0.0584633	0.0130224	0.0183176	0.0161752	0.0149129	0.0038738
	0.0014475	0.0009744	-0.0004953	-0.0000157	-0.0000858	-0.0000673
	-0.0007575	0.0158747	0.6515040	-0.1677025	-0.3263391	-0.3792064
	0.1666693	0.0526834	0.1836432	-0.1818777	0.8018481	0.9938379
1.00 to 2.00	0.0530010	0.0188155	0.0267216	0.0250196	0.0237658	0.0055260
	0.0016786	0.0009315	-0.0002921	0.0003044	-0.0003449	0.0000121
	-0.0006660	0.0197107	0.5819071	-0.0596983	-0.3944350	-0.2676750
	-0.0459249	0.0385525	0.3035811	-0.1487739	0.8542292	0.9925053
2.00 to 4.00	0.0397078	0.0267902	0.0383964	0.0381639	0.0359253	0.0168128
	0.0065428	0.0031976	0.0011212	0.0001523	-0.0011819	-0.0005838
	0.0003421	0.0106837	0.4601275	-0.0459297	-0.6127313	-0.2896862
	-0.2001542	0.0771358	0.0189377	0.3086182	0.9307469	0.9831710
4.00 to 6.00	0.0429480	0.0390275	0.0537080	0.0568942	0.0538668	0.0404909
	0.0254998	0.0156083	0.0085227	0.0033289	-0.0009162	-0.0014155
	-0.0006500	0.0070241	0.4809715	-0.0589891	-0.5612269	-0.2228249
	-0.3539149	0.0308492	0.0258892	0.2674945	0.8908337	0.9806583
6.00 to 8.00	0.0338077	0.0308618	0.0413024	0.0467627	0.0471813	0.0410459
	0.0313908	0.0232711	0.0170424	0.0112588	0.0047711	0.0005880
	-0.0006031	-0.0056719	0.5490080	-0.1058596	-0.5172456	-0.5892470
	0.0002879	-0.0241546	0.3607939	0.1003439	0.9443846	0.9975493
8.00 to 10.0	0.0198070	0.0140910	0.0175012	0.0213214	0.0231222	0.0225639
	0.0199688	0.0171652	0.0148174	0.0132233	0.0097253	0.0051359
	0.0019843	0.0081692	0.2576149	-0.0022423	-0.7766307	-0.3020114
050	0.1691786	-0.0049809	0.3300473	-0.3745058	0.9147022	0.9732737
²⁵² Cf	0.0111404	0.0133828	0.0146153	0.0148671	0.0149662	0.0131436
	0.0096794	0.0062412	0.0034405	0.0015927	0.0006972	0.0002460
	-0.0000275	0.0043138	0.1994782	0.0061004	-0.8403319	0.0224057
	-0.0203116	0.0870102	-0.1643755	0.0782730	0.8010939	0.9826734
14.00	0.0396915	0.0374025	0.0501896	0.0557815	0.0559450	0.0501798
	0.0406900	0.0314361	0.0230933	0.0149423	0.0062647	0.0011605
	-0.0019741	0.0191170	0.5675920	0.1735340	-0.6088180	-0.0213167
	-0.4895494	0.2610349	0.3805100	-0.0003166	0.9800740	0.9948286

Table 3.9: Parameters for the twenty-four term approximation (see Eq. (3.1)) of the neutron albedo based on the 10-mm H^{*}(10) ambient dose equivalent response function. Results obtained using fits based on the minimization of the maximum deviation. Results are for neutrons incident on water. Errors associated with this formula are less than 10% for all cases.

	B_0	B_1	B_2	B_3	B_4	B_5
Energy	B_6	B_7	B_8	B_9	B_{10}	B_{11}
(MeV)	B_{12}	$A_{0,0}$	$A_{0,1}$	$A_{0,2}$	$A_{1,0}$	$A_{1,1}$
	$A_{1,2}$	$A_{2,0}$	$A_{2,1}$	$A_{2,2}$	κ_1	κ_2
0.10 to 0.20	0.0129219	0.0203124	0.0203507	0.0133489	0.0052986	0.0005921
	-0.0009612	-0.0007030	-0.0001533	0.0000032	-0.0000561	-0.0001328
	-0.0000893	0.0036126	0.4117485	0.0827997	-0.6838040	0.0550869
	0.0334064	0.1729190	0.1066032	-0.4833454	0.8967318	0.9901377
0.20 to 0.40	0.0184540	0.0243669	0.0266709	0.0175327	0.0064331	0.0004416
	-0.0011766	-0.0005657	-0.0002026	-0.0000695	-0.0002964	-0.0005765
	-0.0003576	0.0120361	0.4492530	0.1897889	-0.6425737	-0.0350966
	0.2890114	0.3064913	-0.0450006	-0.3401521	0.8451869	0.9562095
0.40 to 0.60	0.0115668	0.0166603	0.0147648	0.0076651	0.0021182	-0.0005477
	-0.0009023	-0.0001264	0.0001958	0.0002109	0.0001216	-0.0000306
	0.0000077	0.0079243	0.2082212	0.1332742	-0.7846735	0.0996876
	0.0948313	0.1604304	0.0968823	-0.3261282	0.8592585	0.9824912
0.60 to 0.80	0.0182030	0.0269427	0.0237484	0.0142403	0.0046316	0.0001613
	-0.0004657	-0.0000652	0.0001062	-0.0002561	-0.0002065	0.0000119
	0.0000239	0.0049888	0.4634968	0.3571756	-0.6575601	0.2666836
	0.0507981	0.1954288	0.1470037	-0.5248015	0.9595597	0.9688572
0.80 to 1.00	0.0141696	0.0166203	0.0180389	0.0098593	0.0023972	-0.0005659
	-0.0011356	-0.0006341	-0.0002396	-0.0001605	-0.0003385	-0.0001092
	-0.0000137	0.0056358	0.2789036	0.1977545	-0.7653953	0.0953145
	0.0376798	0.2119139	0.1314868	-0.0684558	0.9245704	0.9800317
1.00 to 2.00	0.0164421	0.0207049	0.0215597	0.0092660	0.0007758	-0.0020370
	-0.0015547	-0.0001573	0.0005514	0.0002771	-0.0001149	-0.0000278
	0.0001882	0.0077076	0.3279836	0.2694326	-0.7092761	-0.1326348
	0.1940659	0.2269972	0.1750762	-0.0551756	0.9105451	0.9915097
2.00 to 4.00	0.0226896	0.0313581	0.0291665	0.0135662	0.0003836	-0.0025622
	-0.0009443	0.0008327	0.0009503	-0.0002490	-0.0004774	-0.0001232
	0.0004094	0.0103071	0.4304798	0.4783325	-0.6627982	0.0418333
	-0.1594746	0.2574273	-0.0209579	0.3672793	0.9669937	0.9876719
4.00 to 6.00	0.0165370	0.0238119	0.0210479	0.0106129	0.0034434	0.0010876
	0.0007730	0.0015651	0.0011396	0.0001474	-0.0001968	-0.0001304
	0.0000037	0.0121924	0.2629612	0.2150514	-0.7965685	-0.0144339
	0.1634773	0.1745254	0.0287459	-0.1913277	0.8380902	0.9891834
6.00 to 8.00	0.0148640	0.0201575	0.0163847	0.0111439	0.0051654	0.0010073
	0.0021364	0.0027179	0.0010844	0.0000464	0.0000689	0.0001915
	0.0002195	0.0110018	0.2889479	0.2411449	-0.8271057	-0.2590476
0.00 . 40.0	0.2762631	0.1484251	0.4382038	-0.5486105	0.9078802	0.9725868
8.00 to 10.0	0.0149725	0.0203694	0.0171314	0.0105427	0.0065417	0.0029309
	0.0022414	0.0018008	0.0003975	-0.0001573	-0.0000975	0.0000669
	0.0000906	0.0091251	0.3490518	0.2914835	-0.1219292	-0.2725006
959	0.0001474	0.1653099	0.5326599	-0.7780017	0.9327370	0.9961565
²⁰² Cf	0.0371479	0.0258430	0.0307108	0.0308909	0.0317781	0.0326513
	0.0323403	0.0323324	0.0322866	0.0313035	0.0258584	0.0166355
	0.0064871	-0.0072767	0.4471703	-0.0214340	-0.5745561	0.4863048
	-1.3685842	-0.0238093	-0.7921728	1.5318002	0.8808124	0.9998973
14.00	0.0128763	0.0209132	0.0192572	0.0143676	0.0111819	0.0087258
	0.0056577	0.0028383	0.0008183	0.0000196	0.0000215	-0.0000210
	-0.0000637	0.0009609	0.3134141	0.1612224	-0.7289138	-0.4863645
	0.7385826	0.0801827	0.4249718	-0.6998956	0.9121793	0.9937053

Table 3.10: Parameters for the twenty-four term approximation (see Eq. (3.1)) of the Henderson neutron albedo using fits based on the minimization of the maximum deviation. Results are for neutrons incident on concrete. Errors associated with this formula are less than 10% for all cases.

	B_0	B_1	B_2	B_3	B_4	B_5
Energy	B_6	B_7	B_8	B_9	B_{10}	B_{11}
(MeV)	B_{12}	$A_{0,0}$	$A_{0,1}$	$A_{0,2}$	$A_{1,0}$	$A_{1,1}$
	$A_{1,2}$	$A_{2,0}$	$A_{2,1}$	$A_{2,2}$	κ_1	κ_2
0.10 to 0.20	0.0408473	0.0104863	0.0115277	0.0075391	0.0029901	0.0008237
	-0.0001145	-0.0000071	-0.0002238	-0.0000518	-0.0000899	0.0000916
	0.0001534	0.0066857	0.5925267	-0.0427004	-0.4124147	0.1573309
	-0.0816890	0.2371957	0.1335896	-0.1297537	0.8024749	0.9771798
0.20 to 0.40	0.0343749	0.0038561	0.0079840	0.0037168	0.0005182	-0.0005032
	-0.0000900	0.0003560	0.0003872	-0.0001878	-0.0002862	-0.0001403
	-0.0001879	-0.0005914	0.5443345	-0.0713879	-0.4742719	-0.1881539
	0.2535555	0.1600045	0.2108158	-0.0337297	0.8429226	0.9926092
0.40 to 0.60	0.0463148	0.0262991	0.0176753	0.0040060	-0.0003308	-0.0010769
	-0.0004665	0.0002373	-0.0001775	-0.0007452	-0.0001828	0.0005541
	0.0005681	0.0893279	0.3336526	0.2059550	-0.1805005	-0.0912245
	0.0399232	0.1745455	-0.6796408	0.8936342	0.8430666	0.9978002
0.60 to 0.80	0.0385934	0.0173526	0.0086119	0.0049374	0.0027894	0.0016943
	0.0019712	0.0019028	0.0010988	0.0006297	0.0002642	-0.0004169
	-0.0002035	0.0134565	0.4929404	0.1997311	-0.4103292	0.3179910
	-0.1764854	0.1382782	-0.1359962	-0.1396971	0.8935962	0.9886894
0.80 to 1.00	0.0454248	0.0160391	0.0184039	0.0072149	0.0014427	0.0005170
	-0.0008962	-0.0004188	-0.0001346	0.0000816	-0.0000251	0.0004478
	0.0003537	0.0144234	0.4626877	0.0800875	-0.4000383	0.2393774
	-0.1049201	0.1625831	0.1231064	-0.2465398	0.8300226	0.9788117
1.00 to 2.00	0.0513749	0.0247336	0.0317723	0.0090860	0.0041486	0.0000419
	0.0002222	0.0003003	0.0004225	0.0005142	-0.0007989	-0.0002360
	-0.0001669	0.0072024	0.7522088	0.0573492	-0.2158815	-0.2368396
	0.0621842	0.1453888	0.1471377	0.2750945	0.8798493	0.9925969
2.00 to 4.00	0.0314422	0.0229416	0.0247789	0.0138947	0.0056993	0.0025892
	0.0004867	-0.0003472	-0.0002642	-0.0001649	-0.0002184	0.0001475
	0.0002218	0.0164763	0.3546337	0.0644264	-0.6734904	0.2885451
	-0.1670260	0.2478459	-0.3234550	0.1426459	0.8351277	0.9866288
4.00 to 6.00	0.0226270	0.0197946	0.0229153	0.0179155	0.0140000	0.0080587
	0.0030908	0.0011483	0.0003189	0.0001400	0.0000726	0.0002939
	0.0001002	0.0049369	0.3230407	0.1655170	-0.6644186	-0.0254575
6.00 + 0.00	-0.0471666	0.0621181	0.2785351	-0.1308785	0.9601418	0.9881905
6.00 to 8.00	0.0266547	0.0197744	0.0217359	0.0250463	0.0209749	0.0083454
	0.0035880	0.0024355	0.0008850	0.0001218	0.0000083	0.0002367
	0.0002433	0.0100957	0.3924743	0.1002232	-0.0967010	0.1000309
8 00 ± 10 0	-0.00000049	0.1719290	-0.0291119	-0.0000142	0.0910299	0.9855429
8.00 to 10.0	0.0131345	0.0109722	0.0123127	0.0120018	0.0130128	0.0079420
	0.0043478	0.0024230 0.0027012	0.0000884	0.0001233	-0.0000704	-0.0001727
	-0.0000383	0.0037012	0.2308079	0.0363024	-0.7791302	-0.0500410
252.00	0.0707800	0.0800455	0.1089014	-0.1003032	0.8230903	0.9890301
202 Ct	0.0289674	0.0187554	0.0206549	0.0117929	0.0065009	0.0033112
	0.0008745	0.0001633	0.0001411	0.0000385	-0.0000110	0.0000034
	0.0000760	0.0101215	0.3728288	0.0483226	-0.6081457	0.0750461
14.00	-0.0777531	0.12/1142	0.0141860	-0.0298756	0.8186389	0.9881051
14.00	0.0325212	0.0214190	0.0274917	0.0212611	0.0130343	0.0070471
	0.0029692	0.0014170	0.0007229	0.0000131	0.0001554	0.0001219
	-0.0002497	0.0109786	0.3664974	-0.0032516	-0.5888438	0.0455010
L	-0.1245443	0.0758218	0.1640445	-0.1698607	0.8767760	0.9884847

Table 3.11: Parameters for the twenty-four term approximation (see Eq. (3.1)) of the Henderson neutron albedo using fits based on the minimization of the maximum deviation. Results are for neutrons incident on iron. Errors associated with this formula are less than 10% for all cases.

	B_0	B_1	B_2	B_3	B_4	B_5
Energy	B_6	B_7	B_8	B_9	B_{10}	B_{11}
(MeV)	B_{12}	$A_{0,0}$	$A_{0,1}$	$A_{0,2}$	$A_{1,0}$	$A_{1,1}$
	$A_{1,2}$	$A_{2,0}$	$A_{2,1}$	$A_{2,2}$	κ_1	κ_2
0.10 to 0.20	0.0568429	0.0015149	0.0068734	0.0023982	0.0043801	0.0016820
	0.0018035	0.0010615	0.0006176	0.0007871	0.0005067	0.0002892
	0.0000844	0.0230846	0.4220951	-0.1088425	-0.3994379	0.3380446
	-0.3322614	0.1417577	-0.1271229	0.3447472	0.8016368	0.9745416
0.20 to 0.40	0.0523719	0.0066613	0.0110934	0.0057544	0.0062124	0.0023975
	0.0011664	0.0013980	0.0007373	0.0008228	-0.0001473	-0.0001449
	0.0001065	0.0144399	0.4979964	-0.1933688	-0.4102329	-0.1909041
	0.2581546	0.1476519	0.1690086	-0.0057345	0.8434144	0.9937817
0.40 to 0.60	0.0534273	0.0179220	0.0163902	0.0063928	0.0043072	0.0019719
	0.0003388	0.0005212	-0.0002045	-0.0000602	0.0000603	0.0003732
	0.0003147	0.0199295	0.5298851	-0.1275858	-0.3749754	-0.0114290
	-0.1909801	0.1057822	-0.1540832	0.2291274	0.8283215	0.9938819
0.60 to 0.80	0.0593197	0.0099974	0.0179086	0.0053489	0.0022476	0.0015789
	0.0003802	-0.0006042	0.0001950	-0.0002589	0.0002961	0.0003258
	-0.0003119	0.0262756	0.4773376	0.0192400	-0.3221910	-0.0425475
	-0.0008560	0.1199833	0.6133251	-0.4137975	0.9038994	0.9961417
0.80 to 1.00	0.0460497	0.0225927	0.0235697	0.0090690	0.0024160	0.0025661
	0.0008129	0.0010475	0.0008852	-0.0001305	-0.0002191	0.0001839
	-0.0001824	0.0287243	0.3877288	0.0220669	-0.4448413	0.0192785
	-0.1155411	0.0476764	0.1612655	-0.2605198	0.8063052	0.9926504
1.00 to 2.00	0.0463256	0.0198328	0.0315461	0.0155356	0.0063178	0.0033682
	0.0011165	-0.0003117	0.0009552	0.0002319	-0.0001357	0.0008954
	0.0004728	0.0217155	0.4612206	-0.0235658	-0.4613664	0.1628475
	-0.4139751	0.1867534	-0.2852810	0.5006344	0.8060189	0.9929897
2.00 to 4.00	0.0319822	0.0240653	0.0299269	0.0245318	0.0145782	0.0061161
	0.0019217	0.0005330	-0.0001427	-0.0002997	0.0001585	0.0004786
	-0.0000395	0.0094594	0.3567609	-0.0189374	-0.6189120	0.0533492
1.00.000	-0.3771898	0.1172449	-0.0592861	0.2264626	0.8121362	0.9920111
4.00 to 6.00	0.0311202	0.0322847	0.0392007	0.0374224	0.0267277	0.0145373
	0.0061496	0.0016319	-0.0009911	-0.0006718	0.0005903	0.0014972
	0.0006128	0.0037169	0.4887296	0.1404870	-0.5313507	-0.1621853
C 00 + - 8 00	-0.0608073	0.1214923	0.3243723	-0.1478205	0.9956701	0.9890763
6.00 to 8.00	0.0293700	0.0350098	0.0444944	0.0435552	0.0353230	0.0240140
	0.0134626	0.0039303	0.0010200	-0.0007430	-0.0001034	0.0000295
	0.0003039	0.0044525	0.4004240	0.0102210 0.1170025	-0.0097999	-0.0439003
8 00 to 10 0	-0.1481338	0.1340028	0.1089944	-0.1170025	0.9214033	0.9922382
8.00 10 10.0	0.0180439 0.0117248	0.0221398	0.0291719 0.0017783	0.0290781	0.0200024	0.0191193
	0.0117240	0.0003113	0.0017703	-0.0002300	-0.80/3919	-0.1652710
	0.0687994	0.0002201 0.1336617	0.2017055	-0.0072735 -0.2731408	0.8463153	0.1052715
252 Cr	0.0001334	0.1330017	0.2049333	-0.2751450	0.0403103	0.9898699
	0.0334360	0.0211740 0.0050876	0.0279400	0.0299084	0.0263494	0.0140090
	0.0077927	0.00098670	0.0031000	0.001/138	-0.0001127	-0.0000790 0.1852967
	-0.0002239	0.0193838	0.3303887	0.0556779	-0.003/010	0.1003207
14.00	-0.2040798	0.1006270	-0.1200080	-0.0000778	0.0919003	0.9009073
14.00	0.0191003	0.0209232	0.0200131	0.0141949	0.0038800	-0.0003194
	-0.0012362	-0.0003472	-0.0000409	-0.0002043	0.6006414	0.0001011
	0.00000023	0.0000077	0.4402911	0.1924240	-0.0290414	-0.29903/3
	0.3331809	0.1994503	0.3547496	-0.3038130	0.8220101	0.9870746

Table 3.12: Parameters for the twenty-four term approximation (see Eq. (3.1)) of the Henderson neutron albedo using fits based on the minimization of the maximum deviation. Results are for neutrons incident on lead. Errors associated with this formula are less than 10% for all cases.

	B_0	B_1	B_2	B_3	B_4	B_5
Energy	B_6	B_7	B_8	B_9	B_{10}	B_{11}
(MeV)	B_{12}	$A_{0,0}$	$A_{0,1}$	$A_{0,2}$	$A_{1,0}$	$A_{1,1}$
	$A_{1,2}$	$A_{2,0}$	$A_{2,1}$	$A_{2,2}$	κ_1	κ_2
0.10 to 0.20	0.0596784	0.0024067	0.0025928	0.0007143	0.0003239	0.0002651
	-0.0003241	0.0000825	0.0000189	0.0001480	-0.0001957	-0.0003250
	-0.0001831	0.0307043	0.5157136	-0.0621758	-0.3607364	-0.0483732
	-0.2479412	-0.0366587	-0.0249382	0.0633334	0.8089745	0.9737098
0.20 to 0.40	0.0536825	0.0039887	0.0047238	0.0023946	0.0019095	0.0009368
	-0.0000215	-0.0002377	-0.0001252	0.0001787	0.0001571	0.0000433
	-0.0001502	0.0173537	0.5556270	-0.1204979	-0.3940833	-0.2674783
	0.0083136	0.0268270	0.0999070	-0.0414282	0.8467611	0.9934494
0.40 to 0.60	0.0543604	0.0064972	0.0084808	0.0061420	0.0054459	0.0019318
	0.0001346	-0.0002016	-0.0005187	-0.0000504	-0.0002691	-0.0002948
	-0.0002020	0.0195214	0.5740569	-0.1076477	-0.3906276	-0.0267561
	-0.2707539	0.0667427	-0.1065998	0.2031284	0.8376536	0.9933723
0.60 to 0.80	0.0640486	0.0110098	0.0145681	0.0120736	0.0105640	0.0028754
	0.0003718	0.0004318	-0.0003753	-0.0001336	-0.0007477	-0.0010760
	-0.0004461	0.0215236	0.6215711	-0.1413273	-0.3383169	-0.1923645
	-0.1184964	-0.0287436	-0.0329263	0.0578552	0.8001291	0.9725478
0.80 to 1.00	0.0470709	0.0105540	0.0147262	0.0131360	0.0114795	0.0040377
	0.0014879	0.0009161	-0.0000491	0.0000868	-0.0001026	-0.0001982
	-0.0000463	0.0189149	0.4881384	-0.0460112	-0.4900331	0.1343392
	-0.4486175	0.0722081	0.0361637	0.1247298	0.8401004	0.9973103
1.00 to 2.00	0.0455273	0.0164001	0.0226093	0.0221640	0.0209105	0.0048985
	0.0016389	0.0013618	0.0002216	0.0005286	-0.0004481	-0.0004674
	-0.0007024	0.0215951	0.4303992	0.0057742	-0.5158449	-0.1893856
	0.0399987	0.0534463	0.3792592	-0.3835921	0.8373343	0.9919382
2.00 to 4.00	0.0417337	0.0301093	0.0423679	0.0426211	0.0409219	0.0195849
	0.0069506	0.0034664	0.0011697	0.0014436	-0.0019316	-0.0017599
	0.0013095	0.0205131	0.4053877	-0.0204260	-0.6392210	-0.1867500
	-0.1891727	0.1861932	-0.1196378	0.2422830	0.8005747	0.9894552
4.00 to 6.00	0.0320653	0.0337992	0.0467075	0.0489004	0.0461703	0.0340584
	0.0207995	0.0124605	0.0059833	0.0015924	-0.0020223	-0.0014333
	-0.0003863	0.0081198	0.4206825	-0.0306972	-0.6295637	-0.1396278
6.00 + 0.00	-0.2965053	0.1025650	-0.1520412	0.3112409	0.8476574	0.9764702
6.00 to 8.00	0.0217335	0.0233497	0.0310036	0.0353703	0.0359431	0.0310623
	0.0233237	0.01/3/08	0.0131471	0.0080342	0.0035213	0.0004557
	-0.0002109	0.0093963	0.5110702	0.0103403	-0.6075941	0.3407391 0.0022471
8 00 ± 10 0	-0.0304672	0.1913636	-0.0008201	0.0014767	0.9182250	0.9923471
8.00 to 10.0	0.0317734	0.0277290	0.0340244	0.0414707 0.0241876	0.0440333	0.0430745 0.0075455
	0.0303710	0.0031039	0.0207403	0.0241070	0.0103091	0.0075452
	0.002386610	0.0019554	0.0101004	0.7577708	-0.3938230	-0.0343282
252 ar	0.2380019	-0.0001450	0.9090192	-0.1511198	0.3714024	0.9810001
202 Ct	0.0133791	0.0164457	0.0176789	0.0177942	0.0180367	0.0158738
	0.0114456	0.0072695	0.0039888	0.0017181	0.0006207	0.0003104
	0.0000593	0.0051798	0.2457094	0.0448864	-0.7872536	0.0246639
14.00	-0.0110643	0.1243713	-0.0181114	-0.0617095	0.8302872	0.9950136
14.00	0.0156762	0.0167995	0.0226667	0.0246402	0.0246916	0.0218221
	0.0177252	0.0138237	0.0101814	0.0068559	0.0032037	0.0008209
	-0.0000863	-0.0017766	0.2944829	-0.0820118	-0.7568651	-0.2291516
L	0.0381871	0.0746803	-0.1049030	0.2179326	0.8073983	0.9940445

Table 3.13: Parameters for the twenty-four term approximation (see Eq. (3.1)) of the Henderson neutron albedo using fits based on the minimization of the maximum deviation. Results are for neutrons incident on water. Errors associated with this formula are less than 10% for all cases.

	B_0	B_1	B_2	B_3	B_4	B_5
Energy	B_6	B_7	B_8	B_9	B_{10}	B_{11}
(MeV)	B_{12}	$A_{0,0}$	$A_{0,1}$	$A_{0,2}$	$A_{1,0}$	$A_{1,1}$
	$A_{1,2}$	$A_{2,0}$	$A_{2,1}$	$A_{2,2}$	κ_1	κ_2
0.10 to 0.20	0.0282607	0.0441202	0.0430371	0.0269307	0.0096100	-0.0009326
	-0.0050668	-0.0068269	-0.0085389	-0.0106890	-0.0108141	-0.0078304
	-0.0035639	0.0089448	0.6662746	0.1545642	-0.3649386	0.1294430
	-0.1674157	0.1745347	-0.1612282	-0.4784872	0.8083284	0.9736149
0.20 to 0.40	0.0179639	0.0230319	0.0237332	0.0128132	0.0023964	-0.0019188
	-0.0018544	-0.0004572	-0.0000668	-0.0002295	-0.0004848	-0.0005756
	-0.0001268	-0.0076456	0.5422834	0.0370519	-0.5861273	-0.3235804
	0.0959577	0.2394104	-0.0211091	0.2964672	0.8430818	0.9969264
0.40 to 0.60	0.0216005	0.0302312	0.0257632	0.0119361	0.0020901	-0.0018405
	-0.0011323	0.0006902	0.0006702	-0.0001005	-0.0004735	-0.0003653
	-0.0001254	0.0082387	0.5134147	0.0764600	-0.6237431	0.0718603
	0.0487440	0.3864337	-0.0798125	-0.1161001	0.8410516	0.9967477
0.60 to 0.80	0.0160666	0.0232418	0.0192183	0.0101824	0.0025005	0.0001384
	0.0007822	0.0009672	0.0003386	-0.0002106	-0.0001584	0.0000132
	0.0000301	0.0045522	0.3404430	0.1943719	-0.6343792	-0.0191611
	0.0888724	0.1040349	0.1179312	-0.4317697	0.8096378	0.9844092
0.80 to 1.00	0.0240637	0.0281241	0.0298094	0.0163487	0.0048927	0.0010811
	0.0003052	0.0006221	0.0004479	-0.0001619	-0.0000656	0.0001954
	0.0006091	0.0094304	0.4732614	0.2220274	-0.5651481	-0.0116242
	0.0534291	0.3317525	0.0558582	0.0242120	0.8280327	0.9852899
1.00 to 2.00	0.0181101	0.0225734	0.0238239	0.0109764	0.0026056	-0.0005971
	-0.0006403	0.0001167	0.0004196	0.0002532	0.0000833	0.0001750
	0.0001365	-0.0001668	0.4779250	0.1941302	-0.6355354	-0.2893666
	0.2061325	0.2289638	0.1188863	0.2021970	0.9023832	0.9913900
2.00 to 4.00	0.0151472	0.0215002	0.0211302	0.0117899	0.0027411	-0.0004422
	-0.0007694	-0.0001466	0.0001893	0.0000308	-0.0001641	-0.0000072
	0.0001078	0.0065534	0.3103542	0.2671002	-0.7308382	-0.1800325
	0.4559000	0.1731892	0.2890834	-0.3706792	0.9481624	0.9890062
4.00 to 6.00	0.0175151	0.0258543	0.0249069	0.0152510	0.0071735	0.0024562
	0.0000917	0.0002497	0.0003539	0.0002651	0.0002349	-0.0000497
	-0.0000307	-0.0019135	0.4986356	0.2832587	-0.6332342	-0.6681857
	0.7093829	0.1933468	0.8579530	-0.5203027	0.9511541	0.9999297
6.00 to 8.00	0.0310783	0.0424566	0.0369728	0.0272961	0.0122690	-0.0018720
	-0.0019478	0.0005804	-0.0001848	-0.0005567	-0.0003243	-0.0002971
	-0.0003460	0.0080843	0.7923437	0.6242861	-0.5136205	-0.8560690
0.00 / 10.0	0.5136434	0.3532789	0.9610540	-0.2934714	0.9600402	0.9736708
8.00 to 10.0	0.0179757	0.0252587	0.0224828	0.0149914	0.0089911	0.0021640
	0.0004975	0.0009320	0.0005972	-0.0000059	-0.0001551	-0.0000442
	0.0000961	0.0172308	0.2976437	0.4716632	-0.7622217	0.2514628
050	0.0639793	0.2692690	0.0396489	-0.1046634	0.9574637	0.9907365
²⁵² Cf	0.0552567	0.0450798	0.0531871	0.0550070	0.0574887	0.0595465
	0.0602102	0.0630350	0.0642641	0.0668842	0.0606592	0.0437319
	0.0208147	0.0326367	0.5266359	0.5344915	-0.4226910	0.4975843
	-0.2715181	0.3159427	-0.2708678	-0.3639156	0.9998305	0.9979644
14.00	0.0130847	0.0217954	0.0202216	0.0147346	0.0108353	0.0079128
	0.0050068	0.0028258	0.0011537	0.0001682	-0.0001057	-0.0001960
	-0.0000191	0.0058144	0.2308690	0.2740448	-0.7751903	0.0666098
	0.0786978	0.1224670	-0.1653614	0.0408180	0.9468828	0.9849126

Parameters for Secondary-Photon Approximations

The MCNP code was used to obtain also a set of secondary-photon albedo data based on modern response functions.¹ The secondary albedo arises from the production inelastic and capture gamma rays that are radiated from the reflecting surface. In general, the secondary-photon albedo is independent of the azimuthal angle as a consequence of the isotropic emission of secondary gamma rays. Also of note is that the magnitude of the secondary-photon dose albedo is usually considerably less than that of the neutron dose albedo and, consequently, a high accuracy approximation for the secondary-photon albedo is generally not needed.

The empirical approximation of the differential secondary-photon dose albedo used here is that proposed by Maerker and Muckenthaler,⁶ namely

$$\alpha_{D_2}^{(n,\gamma)}(\theta_o,\theta) = \cos^{A_1}(\theta)(A_2 + A_3\cos(\theta_o) + A_4\cos^2(\theta_o)A_5.$$
(4.1)

where the parameters A_1 , A_2 , A_3 , A_4 , and A_5 are functions of the reflecting media and the energy of the incident neutrons. This approximation can produce errors in some cases that exceed 20% of the MCNP calculated values. Thus when the reflected secondary photon dose is not dwarfed by the reflected neutron dose, more accurate methods may have to be used.

4.1 Coefficients for the Secondary-Photon Albedo

This section presents tables of the parameters in Eq. (4.1) that were obtained by fitting this approximating equation to MCNP albedo results for the secondary photon dose. First a summary of the tables.

- Table 3.1: Parameters for the five term approximation (see Eq. (4.1)) of the secondary-photon albedo based on the effective dose in an anthropomorphic phantom of an adult irradiated in AP geometry by a plane parallel beam of neutrons. Results are for neutrons incident on concrete.
- Table 3.2: Parameters for the five term approximation (see Eq. (4.1)) of the secondary-photon albedo based on the effective dose in an anthropomorphic phantom of an adult irradiated in AP geometry by a plane parallel beam of neutrons. Results are for neutrons incident on iron.
- Table 3.3: Parameters for the five term approximation (see Eq. (4.1)) of the secondary-photon albedo based on the effective dose in an anthropomorphic phantom of an adult irradiated

 $^{^{1}}$ For photon energies above 100 keV, the various photon response functions are nearly equal, but at low energies significant differences occur.¹

in AP geometry by a plane parallel beam of neutrons. Results are for neutrons incident on lead.

- Table 3.4: Parameters for the five term approximation (see Eq. (4.1)) of the secondary-photon albedo based on the effective dose in an anthropomorphic phantom of an adult irradiated in AP geometry by a plane parallel beam of neutrons. Results are for neutrons incident on water.
- Table 3.5: Parameters for the five term approximation (see Eq. (4.1)) of the ambient dose equivalent secondary-photon albedo using fits based on the minimization of the maximum deviation. Results are for neutrons incident on concrete.
- Table 3.6: Parameters for the five term approximation (see Eq. (4.1)) of the ambient dose equivalent secondary-photon albedo using fits based on the minimization of the maximum deviation. Results are for neutrons incident on iron.
- Table 3.7: Parameters for the five term approximation (see Eq. (4.1)) of the ambient dose equivalent secondary-photon albedo using fits based on the minimization of the maximum deviation. Results are for neutrons incident on lead.
- Table 3.8: Parameters for the five term approximation (see Eq. (4.1)) of the ambient dose equivalent secondary-photon albedo using fits based on the minimization of the maximum deviation. Results are for neutrons incident on water.

Table 4.1: Parameters for the five term approximation (see Eq. (4.1)) of the secondary-photon albedo based on the effective dose in an anthropomorphic phantom of an adult irradiated in AP geometry by a plane parallel beam of neutrons. Results are for neutrons incident on concrete.

Energy (MeV)	A_1	A_2	A_3	A_4	A_5
0.10 to 0.20	1.2251468	0.0244704	0.0492298	-0.0139381	0.1115075
0.20 to 0.40	1.2312173	0.0382557	0.0728755	-0.0178280	0.0334618
0.40 to 0.60	1.2465343	0.0566632	0.0230508	0.0334666	0.0191218
0.60 to 0.80	1.2598252	0.0516362	0.1092739	-0.0271548	0.0137100
0.80 to 1.00	1.2596647	0.3457001	0.6278656	-0.1596085	0.0015772
1.00 to 2.00	1.1835890	0.0215553	0.0244932	-0.0055013	0.0226385
2.00 to 4.00	0.9302703	0.0965355	0.0155189	-0.0228828	0.0079061
4.00 to 6.00	0.8155854	0.6318846	-0.4807632	0.2377993	0.0017701
6.00 to 8.00	0.6953283	0.1176576	-0.1137153	0.0515859	0.0142176
8.00 to 10.0	0.6189852	0.0438972	-0.0430205	0.0181101	0.0561712
thermal	0.6655248	0.5093092	0.4784400	-0.1576664	0.1053226
^{252}Cf	0.9323229	0.3482235	-0.1363502	0.1003944	0.0026425
14.00	0.6113197	0.0728122	-0.0481110	0.0082567	0.0341440

Table 4.2: Parameters for the five term approximation (see Eq. (4.1)) of the secondary-photon albedo based on the effective dose in an anthropomorphic phantom of an adult irradiated in AP geometry by a plane parallel beam of neutrons. Results are for neutrons incident on iron.

Energy (MeV)	A_1	A_2	A_3	A_4	A_5
0.10 to 0.20	0.8710743	0.0797620	0.0120419	-0.0287338	0.0099508
0.20 to 0.40	0.8836678	0.1742562	-0.0932990	0.0442706	0.0020455
0.40 to 0.60	0.8955561	0.6438627	-0.4678769	0.3001452	0.0003028
0.60 to 0.80	0.8724657	0.0408169	-0.0282661	0.0108720	0.0052592
0.80 to 1.00	0.8770500	8.3514328	-9.8536100	4.8210826	0.0000662
1.00 to 2.00	0.8257488	0.5569490	-0.6178252	0.2497904	0.0019963
2.00 to 4.00	0.7695332	2.3030035	-2.4190037	0.9158955	0.0007948
4.00 to 6.00	0.7104058	0.0418370	-0.0444250	0.0166866	0.0766489
6.00 to 8.00	0.6944658	0.0919063	-0.1026560	0.0403242	0.0449133
8.00 to 10.0	0.6915188	0.8185335	-0.9923991	0.4217865	0.0061020
thermal	0.4737152	0.8095560	-0.0572335	-0.0013854	0.2898302
^{252}Cf	0.7539093	0.0844316	-0.0897748	0.0342908	0.0220616
14.00	0.7332955	0.6370363	-0.8658730	0.4122701	0.0061452

Table 4.3: Parameters for the five term approximation (see Eq. (4.1)) of the secondary-photon albedo based on the effective dose in an anthropomorphic phantom of an adult irradiated in AP geometry by a plane parallel beam of neutrons. Results are for neutrons incident on lead.

Energy (MeV)	A_1	A_2	A_3	A_4	A_5
0.10 to 0.20	0.9621408	0.0743082	-0.1046940	0.0744989	0.0012377
0.20 to 0.40	1.0087917	0.4655106	-0.5433951	0.2900578	0.0001053
0.40 to 0.60	0.9889426	0.0224481	-0.0339542	0.0212531	0.0024170
0.60 to 0.80	0.9656463	0.7833453	-1.0802637	0.5530955	0.0001113
0.80 to 1.00	0.9707490	0.0289457	-0.0432212	0.0237198	0.0026265
1.00 to 2.00	0.9177297	2.1745727	-3.4996209	1.8672628	0.0001154
2.00 to 4.00	0.8235922	1.0025156	-1.4573236	0.7075629	0.0007692
4.00 to 6.00	0.7934989	1.8551555	-2.9603820	1.4864856	0.0011888
6.00 to 8.00	0.8063422	0.1566196	-0.2711856	0.1447060	0.0220095
8.00 to 10.0	0.8146378	0.0293868	-0.0516014	0.0278125	0.1193333
thermal	0.8283303	0.1766881	-0.1575702	0.0814234	0.1146051
^{252}Cf	0.8161706	0.0563876	-0.0887288	0.0448796	0.0170483
14.00	0.8523101	0.0947697	-0.1601377	0.0834415	0.0190064

Table 4.4: Parameters for the five term approximation (see Eq. (4.1)) of the secondary-photon albedo based on the effective dose in an anthropomorphic phantom of an adult irradiated in AP geometry by a plane parallel beam of neutrons. Results are for neutrons incident on water.

Energy (MeV)	A_1	A_2	A_3	A_4	A_5
0.10 to 0.20	0.6388776	0.0487953	0.1390402	-0.0437256	0.0818028
0.20 to 0.40	0.6637982	0.0851111	0.2292753	-0.0729601	0.0266027
0.40 to 0.60	0.6867675	0.0593353	0.1627581	-0.0529712	0.0253296
0.60 to 0.80	0.7105665	0.0279022	0.0895744	-0.0357269	0.0437585
0.80 to 1.00	0.7322555	0.0097584	0.0277489	-0.0109596	0.1084777
1.00 to 2.00	0.7673881	0.1444688	0.4639908	-0.2144744	0.0054993
2.00 to 4.00	0.8402552	0.0328599	0.1101252	-0.0623736	0.0190932
4.00 to 6.00	0.9093888	0.0541582	0.1914711	-0.1258215	0.0098298
6.00 to 8.00	0.7677557	0.1410829	0.1520253	-0.1252073	0.0050784
8.00 to 10.0	0.6074991	0.0292048	0.0006828	-0.0073666	0.0374298
thermal	0.3450067	0.3790261	0.7546664	-0.2058531	0.0451361
^{252}Cf	0.7850721	0.0172006	0.0546228	-0.0284132	0.0439700
14.00	0.5990620	0.0694251	-0.0148203	-0.0067386	0.0180419

Table 4.5: Parameters for the five term approximation (see Eq. (4.1)) of the ambient dose equivalent secondary-photon albedo using fits based on the minimization of the maximum deviation. Results are for neutrons incident on concrete.

Energy (MeV)	A_1	A_2	A_3	A_4	A_5
0.10 to 0.20	1.2256033	0.0638375	0.1287182	-0.0365617	0.0137941
0.20 to 0.40	1.2328238	0.0218045	0.0417456	-0.0102296	0.0203584
0.40 to 0.60	1.2478099	0.1814403	0.0733548	0.1078396	0.0022300
0.60 to 0.80	1.2597181	0.0507181	0.1065247	-0.0262779	0.0056767
0.80 to 1.00	1.2604353	0.0218006	0.0396005	-0.0101063	0.0109961
1.00 to 2.00	1.1804842	0.0345058	0.0422212	-0.0119163	0.0077079
2.00 to 4.00	0.9267063	0.5350051	0.0652701	-0.1112095	0.0010900
4.00 to 6.00	0.8145848	0.4692991	-0.3926117	0.2092658	0.0022836
6.00 to 8.00	0.6978850	0.1410359	-0.1356589	0.0612874	0.0117359
8.00 to 10.0	0.6228144	0.0861592	-0.0837287	0.0349653	0.0250683
thermal	0.6683126	0.2879494	0.2936914	-0.1094149	0.0998052
^{252}Cf	0.9308342	0.0430707	-0.0140312	0.0095817	0.0139569
14.00	0.6149221	0.0851669	-0.0743139	0.0271471	0.0294899

Table 4.6: Parameters for the five term approximation (see Eq. (4.1)) of the ambient dose equivalent secondary-photon albedo using fits based on the minimization of the maximum deviation. Results are for neutrons incident on iron.

Energy (MeV)	A_1	A_2	A_3	A_4	A_5
0.10 to 0.20	0.8727888	0.3910898	-0.1651363	0.0705975	0.0006783
0.20 to 0.40	0.8868781	0.1682039	-0.0892619	0.0421833	0.0007284
0.40 to 0.60	0.8977394	0.0637598	-0.0159727	0.0013926	0.0010851
0.60 to 0.80	0.8745456	0.1903683	-0.1307043	0.0501842	0.0004495
0.80 to 1.00	0.8765674	0.0403735	-0.0417100	0.0173702	0.0060748
1.00 to 2.00	0.8257353	0.8330504	-0.9675792	0.4149715	0.0007585
2.00 to 4.00	0.7707039	0.0321307	-0.0335682	0.0126081	0.0442171
4.00 to 6.00	0.7122030	0.5731707	-0.6470894	0.2664282	0.0054015
6.00 to 8.00	0.6969441	0.0559594	-0.0626762	0.0247631	0.0735622
8.00 to 10.0	0.6942459	0.1688198	-0.1956101	0.0782608	0.0261653
thermal	0.4764265	0.7414173	0.0931285	-0.1350677	0.1645858
^{252}Cf	0.7553329	1.1404155	-1.1852769	0.4367836	0.0010909
14.00	0.7365907	0.7625878	-0.9469593	0.4063371	0.0051079

Table 4.7: Parameters for the five term approximation (see Eq. (4.1)) of the ambient dose equivalent secondary-photon albedo using fits based on the minimization of the maximum deviation. Results are for neutrons incident on lead.

Energy (MeV)	A_1	A_2	A_3	A_4	A_5
0.10 to 0.20	0.9625199	1.5401880	-2.1370354	1.5138557	0.0000189
0.20 to 0.40	1.0064926	8.8446321	-9.9999504	5.2171597	0.0000019
0.40 to 0.60	0.9896619	8.0910301	-9.9999886	5.0190039	0.0000024
0.60 to 0.80	0.9639104	7.0908947	-9.9279041	5.1394620	0.0000051
0.80 to 1.00	0.9711326	0.0958014	-0.1438290	0.0793675	0.0003579
1.00 to 2.00	0.9178385	0.3052734	-0.4916002	0.2621346	0.0004646
2.00 to 4.00	0.8245898	0.3646463	-0.5314746	0.2586226	0.0016356
4.00 to 6.00	0.7945315	0.1351111	-0.2158038	0.1084514	0.0156090
6.00 to 8.00	0.8075593	1.9551373	-3.3866832	1.8079202	0.0017540
8.00 to 10.0	0.8159494	0.0736450	-0.1292748	0.0696660	0.0422499
thermal	0.8293945	0.9605026	-0.8077921	0.3992487	0.0109283
^{252}Cf	0.8174528	0.0310898	-0.0489764	0.0248023	0.0206109
14.00	0.8536811	0.0453257	-0.0766899	0.0400009	0.0404982

Table 4.8: Parameters for the five term approximation (see Eq. (4.1)) of the ambient dose equivalent secondary-photon albedo using fits based on the minimization of the maximum deviation. Results are for neutrons incident on water.

Energy (MeV)	A_1	A_2	A_3	A_4	A_5
0.10 to 0.20	0.6407247	0.0593760	0.1594001	-0.0452385	0.0226027
0.20 to 0.40	0.6655912	0.0094389	0.0252501	-0.0079355	0.0858675
0.40 to 0.60	0.6886491	0.0164475	0.0474505	-0.0165714	0.0348122
0.60 to 0.80	0.7123201	0.0230588	0.0749818	-0.0302738	0.0220694
0.80 to 1.00	0.7340014	0.0432483	0.1365578	-0.0597300	0.0108535
1.00 to 2.00	0.7691070	0.0241902	0.0775496	-0.0357483	0.0184533
2.00 to 4.00	0.8417001	0.2769863	0.9282053	-0.5249802	0.0017484
4.00 to 6.00	0.9106550	0.0213192	0.0754003	-0.0494900	0.0240043
6.00 to 8.00	0.7757766	0.6343027	0.7231793	-0.5882518	0.0011233
8.00 to 10.0	0.6168484	0.2000332	0.0335462	-0.0756631	0.0047815
thermal	0.3471366	0.0873124	0.1643816	-0.0394940	0.1095107
^{252}Cf	0.7872421	0.0460545	0.1462282	-0.0758350	0.0109788
14.00	0.6069419	0.1044084	-0.0126468	-0.0186599	0.0118985

REFERENCES

- 1. J.K. Shultis and R.E. Faw, Radiation Shielding, Am. Nucl. Soc., LaGrange Park, IL, (2000).
- A.B. Chilton and C.M. Huddleston, "A Semiempirical Formula for Differential Dose Albedo for Gamma Rays on Concrete," *Nucl. Sci. Eng.*, 17, 419 (1963).
- D.J. Raso, "Monte Carlo Calculations on the Reflection and Transmission of Scattered Gamma Rays," Nucl. Sci. Eng., 17, 411 (1963).
- A.B. Chilton, C.M. Davisson, and L.A. Beach, "Parameters for C-H Albedo Formula for Gamma Rays Reflected from Water, Concrete, Iron, and Lead," *Trans. Am. Nucl. Soc.*, 8, 656 (1965).
- A.B. Chilton, "A Modified Formula for Differential Exposure Albedo for Gamma Rays Reflected from Concrete," *Nucl. Sci. Eng.*, 27, 481 (1967).
- R.E. Maerker and F.J. Muckenthaler, "Calculation and Measurement of the Fast-Neutron Differential Dose Albedo for Concrete," *Nucl. Sci. Eng.*, 22, 455 (1965).
- R.E. Allen, A. Futterer, and W. Wright, Reports BRL-1148 (1961), BRL-1189 (1963), BRL-1190 (1963), BRL-1204 (1963), BRL-1204 (1963), BRL-1224 (1963), and BRL-1238 (1964), Ballistic Research Laboratory, Aberdeen Proving Ground, MD.
- 8. R.L. French and M.B. Wells, An Angular Dependent Albedo for Fast-Neutron Reflection Calculations, Report RRA-M31, Radiation Research Associates, Fort Worth, TX, (1963).
- Y.T. Song, C.M. Huddleston and A.B. Chilton, "Differential Dose Albedo for Fast Neutrons," Nucl. Sci. Eng., 35, 401 (1969).
- G.L. Simmons, T.E. Albert, and M.L. Gritzner, *The SAI/EPRI Albedo Information Library*, Report SAI-013-79-525-LJ (RSIC Code Collection DLC-57), Science Applications, Inc., La Jolla, CA, (1979).
- V.R. Cain and M.B. Emmett, BREESE-II: Auxiliary Routines for Implementing the Albedo Option in the MORSE Monte Carlo Code, Report ORNL/TM-6807 (RSIC Code Collection PSR 143), Oak Ridge National Laboratory, Oak Ridge, TN, (1979).
- X. Wang, Neutron and Secondary Gamma Ray Reflection and Transmission Properties of Concrete, M.S. thesis, Kansas State University, Manhattan, KS, (1993).
- W.A. Coleman, R.E. Maerker, F.J. Muckenthaler, and P.N. Stevens, "Calculation of Doubly Differential Current Albedos for Epicadmium Neutrons Incident on Concrete and Comparison of the Subcadmium Component with Experiment," *Nucl. Sci. Eng.*, 27, 411 (1967).
- 14. M.B. Wells, *Reflection of Thermal Neutrons and Neutron-Capture Gamma Rays from Concrete*, Report RRA-M44, Radiation Research Associates, Fort Worth, TX, (1964).
- R.E. Maerker and F.J. Muckenthaler, "Measurements and Single-Velocity Calculations of Differential Angular Thermal-Neutron Albedos for Concrete," *Nucl. Sci. Eng.*, 26, 339 (1966).
- 16. S. Chandrasekhar Radiative Transfer, Dover, New York, (1960).
- L.V. Spencer, J.A. Diaz, and E. Moses, *Neutron Penetration in Cylindrical Ducts*, Report NBS 8542, US National Bureau of Standards, Washington, DC, (1964).

- W.E. Selph, "Albedos, Ducts and Voids," Chapter 7 in *Reactor Shielding for Nuclear Engineers*, N.M. Schaeffer (ed.), TID 25951, National Technical Information Service, U.S. Department of Commerce, Springfield, VA, (1973).
- 19. G.P. Cavanaugh, A Calculation and Analysis of Albedos Due to 14-MeV Neutrons Incident on Concrete, Ph.D. dissertation, University of Illinois at Urbana-Champaign, IL, (1975).
- G.J. Henderson, Conversion of Neutron or Gamma Ray Flux to Absorbed Dose Rate, USAEC Report XDC-59-8-179, (1959).
- NCRP, Protection Against Neutron Radiation, Recommendations of the National Council on Radiation Protection and Measurements, Report 38, National Council on Radiation Protection and Measurement, Washington, DC (1971).
- INTERNATIONAL COMMISSION ON RADIOLOGICAL PROTECTION, Data for Use in Protection Against External Radiation, Publ. 51, Annals of the ICRP, 17, No. 2/3, Pergammon Press, Oxford (1987).
- INTERNATIONAL COMMISSION ON RADIOLOGICAL PROTECTION, Conversion Coefficients for Use in Radiological Protection Against External Radiation, Publ. 51, Annals of the ICRP, 26, No. 3/4, Pergammon Press, Oxford (1996).
- R.E. Faw and J.K. Shultis, *Radiological Assessment: Sources and Doses*, Am. Nucl. Soc., La Grange Park, IL (1999).
- 25. X-5 Monte Carlo Team, MCNP A General Purpose Monte Carlo N-Particle Transport Code, Version 5, Vol. II User's Guide, LA-CP-03-0245, Los Alamos National Lab., (2003).
- 26. R.C. Brockhoff, J.K. Shutlis and R.E. Faw, "Data fro the Chilton-Huddleston Photon-Albedo Approximations," *Nuclear Science & Engineering*, **126**, 119-126, 1997.
- 27. AMERICAN NATIONAL STANDARDS INSTITUTE, Guidelines on the Nuclear Analysis and Design of Concrete Radiation Shielding for Nuclear Power Plants, ANSI/ANS-6.4-1985, New York (1985).
- R.C. Brockhoff, Calculation of Albedos for Neutrons and Photons, Ph. D. dissertation, Kansas State University, (2003).
- 29. R.C. Brockhoff and J.K. Shultis, "A New Approximation for the Neutron Albedo," Nuclear Science & Engineering, in press (2006).